Cargando…
Mitochondrial DNA Alterations in Glioblastoma (GBM)
Glioblastoma (GBM) is an extremely aggressive tumor originating from neural stem cells of the central nervous system, which has high histopathological and genomic diversity. Mitochondria are cellular organelles associated with the regulation of cellular metabolism, redox signaling, energy generation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199454/ https://www.ncbi.nlm.nih.gov/pubmed/34072607 http://dx.doi.org/10.3390/ijms22115855 |
Sumario: | Glioblastoma (GBM) is an extremely aggressive tumor originating from neural stem cells of the central nervous system, which has high histopathological and genomic diversity. Mitochondria are cellular organelles associated with the regulation of cellular metabolism, redox signaling, energy generation, regulation of cell proliferation, and apoptosis. Accumulation of mutations in mitochondrial DNA (mtDNA) leads to mitochondrial dysfunction that plays an important role in GBM pathogenesis, favoring abnormal energy and reactive oxygen species production and resistance to apoptosis and to chemotherapeutic agents. The present review summarizes the known mitochondrial DNA alterations related to GBM, their cellular and metabolic consequences, and their association with diagnosis, prognosis, and treatment. |
---|