Cargando…

Link-Correlation-Aware Opportunistic Routing in Low-Duty-Cycle Wireless Networks

In low-duty-cycle wireless networks with unreliable and correlated links, Opportunistic Routing (OR) is extremely costly because of the unaligned working schedules of nodes within a common candidate forwarder set. In this work, we propose a novel polynomial-time node scheduling scheme considering li...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Xingfa, Liu, Lili, Ni, Zhenxian, Liu, Mingxin, Zhao, Bei, Shang, Yuling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199512/
https://www.ncbi.nlm.nih.gov/pubmed/34206132
http://dx.doi.org/10.3390/s21113840
Descripción
Sumario:In low-duty-cycle wireless networks with unreliable and correlated links, Opportunistic Routing (OR) is extremely costly because of the unaligned working schedules of nodes within a common candidate forwarder set. In this work, we propose a novel polynomial-time node scheduling scheme considering link correlation for OR in low-duty-cycle wireless networks (LDC-COR), which significantly improves the performance by assigning nodes with low correlation to a common group and scheduling the nodes within this group to wake up simultaneously for forwarding packets in a common cycle. By taking account of both link correlation and link quality, the performance of the expected transmission count (ETX) is improved by adopting the LDC-COR protocol. As a result, the energy consumption of low-duty-cycle OR is significantly reduced. LDC-COR only requires the information of one-hop neighboring nodes which introduces minimal communication overhead. The proposed LDC-COR bridges the gap between the nodes’ limited energy resource and the application lifetime requirements. We evaluate the performance of LDC-COR with extensive simulations and a physical wireless testbed consisting of 20 TelosB nodes. The evaluation results show that both transmission efficiency and energy consumption of low-duty-cycle OR are significantly improved with only a slight increase of end-to-end delay.