Cargando…
On the Uncertainty Identification for Linear Dynamic Systems Using Stochastic Embedding Approach with Gaussian Mixture Models
In control and monitoring of manufacturing processes, it is key to understand model uncertainty in order to achieve the required levels of consistency, quality, and economy, among others. In aerospace applications, models need to be very precise and able to describe the entire dynamics of an aircraf...
Autores principales: | Orellana, Rafael, Carvajal, Rodrigo, Escárate, Pedro, Agüero, Juan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199550/ https://www.ncbi.nlm.nih.gov/pubmed/34206104 http://dx.doi.org/10.3390/s21113837 |
Ejemplares similares
-
A data augmentation approach for a class of statistical inference problems
por: Carvajal, Rodrigo, et al.
Publicado: (2018) -
Disturbance Modelling for Minimum Variance Control in Adaptive Optics Systems Using Wavefront Sensor Sampled-Data
por: Coronel, María, et al.
Publicado: (2021) -
An Optimal Integral Controller for Adaptive Optics Systems
por: Escárate, Pedro, et al.
Publicado: (2023) -
Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding
por: Uğur, Yiğit, et al.
Publicado: (2020) -
Uncertainty Estimation Using Variational Mixture of Gaussians Capsule Network for Health Image Classification
por: Mensah, Patrick Kwabena, et al.
Publicado: (2022)