Cargando…
Multi-Scale Superpixels Dimension Reduction Hyperspectral Image Classification Algorithm Based on Low Rank Sparse Representation Joint Hierarchical Recursive Filtering
The original Hyperspectral image (HSI) has different degrees of Hughes phenomenon and mixed noise, leading to the decline of classification accuracy. To make full use of the spatial-spectral joint information of HSI and improve the classification accuracy, a novel dual feature extraction framework j...
Autores principales: | Qu, Shenming, Liu, Xuan, Liang, Shengbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199627/ https://www.ncbi.nlm.nih.gov/pubmed/34199480 http://dx.doi.org/10.3390/s21113846 |
Ejemplares similares
-
Robust Superpixel Segmentation for Hyperspectral-Image Restoration
por: Fan, Ya-Ru
Publicado: (2023) -
A Robust Sparse Representation Model for Hyperspectral Image Classification †
por: Huang, Shaoguang, et al.
Publicado: (2017) -
Multi-Scale Superpixel-Guided Structural Profiles for Hyperspectral Image Classification
por: Wang, Nanlan, et al.
Publicado: (2022) -
Brain Lesion Segmentation Based on Joint Constraints of Low-Rank Representation and Sparse Representation
por: Ge, Ting, et al.
Publicado: (2019) -
A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
por: Zhang, Yi, et al.
Publicado: (2018)