Cargando…

Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion

An unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-bui...

Descripción completa

Detalles Bibliográficos
Autores principales: Varela, Jaime, Arrieta, Edel, Paliwal, Muktesh, Marucci, Mike, Sandoval, Jose H., Gonzalez, Jose A., McWilliams, Brandon, Murr, Lawrence E., Wicker, Ryan B., Medina, Francisco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199647/
https://www.ncbi.nlm.nih.gov/pubmed/34199584
http://dx.doi.org/10.3390/ma14113028
_version_ 1783707425741733888
author Varela, Jaime
Arrieta, Edel
Paliwal, Muktesh
Marucci, Mike
Sandoval, Jose H.
Gonzalez, Jose A.
McWilliams, Brandon
Murr, Lawrence E.
Wicker, Ryan B.
Medina, Francisco
author_facet Varela, Jaime
Arrieta, Edel
Paliwal, Muktesh
Marucci, Mike
Sandoval, Jose H.
Gonzalez, Jose A.
McWilliams, Brandon
Murr, Lawrence E.
Wicker, Ryan B.
Medina, Francisco
author_sort Varela, Jaime
collection PubMed
description An unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-built products, utilizing optimized processing parameters, had a Rockwell-C scale (HRC) hardness of 44.6. Following heat treatments which included annealing at 704 °C, HIP at ~926 °C (average), and HIP + anneal, the HRC hardnesses were observed to be 43.9, 40.7, and 40.4, respectively. The corresponding tensile yield stress, UTS, and elongation for these heat treatments averaged 1.19 GPa, 1.22 GPa, 8.7%; 1.03 GPa, 1.08 GPa, 16.7%; 1.04 GPa, 1.09 GPa, 16.1%, respectively. The HIP yield strength and elongation of 1.03 GPa and 16.7% are comparable to the best commercial, wrought Ti-6Al-4V products. The corresponding HIP component microstructures consisted of elongated small grains (~125 microns diameter) containing fine, alpha/beta lamellae.
format Online
Article
Text
id pubmed-8199647
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81996472021-06-14 Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion Varela, Jaime Arrieta, Edel Paliwal, Muktesh Marucci, Mike Sandoval, Jose H. Gonzalez, Jose A. McWilliams, Brandon Murr, Lawrence E. Wicker, Ryan B. Medina, Francisco Materials (Basel) Article An unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-built products, utilizing optimized processing parameters, had a Rockwell-C scale (HRC) hardness of 44.6. Following heat treatments which included annealing at 704 °C, HIP at ~926 °C (average), and HIP + anneal, the HRC hardnesses were observed to be 43.9, 40.7, and 40.4, respectively. The corresponding tensile yield stress, UTS, and elongation for these heat treatments averaged 1.19 GPa, 1.22 GPa, 8.7%; 1.03 GPa, 1.08 GPa, 16.7%; 1.04 GPa, 1.09 GPa, 16.1%, respectively. The HIP yield strength and elongation of 1.03 GPa and 16.7% are comparable to the best commercial, wrought Ti-6Al-4V products. The corresponding HIP component microstructures consisted of elongated small grains (~125 microns diameter) containing fine, alpha/beta lamellae. MDPI 2021-06-02 /pmc/articles/PMC8199647/ /pubmed/34199584 http://dx.doi.org/10.3390/ma14113028 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Varela, Jaime
Arrieta, Edel
Paliwal, Muktesh
Marucci, Mike
Sandoval, Jose H.
Gonzalez, Jose A.
McWilliams, Brandon
Murr, Lawrence E.
Wicker, Ryan B.
Medina, Francisco
Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion
title Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion
title_full Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion
title_fullStr Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion
title_full_unstemmed Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion
title_short Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion
title_sort investigation of microstructure and mechanical properties for ti-6al-4v alloy parts produced using non-spherical precursor powder by laser powder bed fusion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199647/
https://www.ncbi.nlm.nih.gov/pubmed/34199584
http://dx.doi.org/10.3390/ma14113028
work_keys_str_mv AT varelajaime investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT arrietaedel investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT paliwalmuktesh investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT maruccimike investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT sandovaljoseh investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT gonzalezjosea investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT mcwilliamsbrandon investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT murrlawrencee investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT wickerryanb investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion
AT medinafrancisco investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion