Cargando…
Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion
An unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-bui...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199647/ https://www.ncbi.nlm.nih.gov/pubmed/34199584 http://dx.doi.org/10.3390/ma14113028 |
_version_ | 1783707425741733888 |
---|---|
author | Varela, Jaime Arrieta, Edel Paliwal, Muktesh Marucci, Mike Sandoval, Jose H. Gonzalez, Jose A. McWilliams, Brandon Murr, Lawrence E. Wicker, Ryan B. Medina, Francisco |
author_facet | Varela, Jaime Arrieta, Edel Paliwal, Muktesh Marucci, Mike Sandoval, Jose H. Gonzalez, Jose A. McWilliams, Brandon Murr, Lawrence E. Wicker, Ryan B. Medina, Francisco |
author_sort | Varela, Jaime |
collection | PubMed |
description | An unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-built products, utilizing optimized processing parameters, had a Rockwell-C scale (HRC) hardness of 44.6. Following heat treatments which included annealing at 704 °C, HIP at ~926 °C (average), and HIP + anneal, the HRC hardnesses were observed to be 43.9, 40.7, and 40.4, respectively. The corresponding tensile yield stress, UTS, and elongation for these heat treatments averaged 1.19 GPa, 1.22 GPa, 8.7%; 1.03 GPa, 1.08 GPa, 16.7%; 1.04 GPa, 1.09 GPa, 16.1%, respectively. The HIP yield strength and elongation of 1.03 GPa and 16.7% are comparable to the best commercial, wrought Ti-6Al-4V products. The corresponding HIP component microstructures consisted of elongated small grains (~125 microns diameter) containing fine, alpha/beta lamellae. |
format | Online Article Text |
id | pubmed-8199647 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81996472021-06-14 Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion Varela, Jaime Arrieta, Edel Paliwal, Muktesh Marucci, Mike Sandoval, Jose H. Gonzalez, Jose A. McWilliams, Brandon Murr, Lawrence E. Wicker, Ryan B. Medina, Francisco Materials (Basel) Article An unmodified, non-spherical, hydride-dehydride (HDH) Ti-6Al-4V powder having a substantial economic advantage over spherical, atomized Ti-6Al-4V alloy powder was used to fabricate a range of test components and aerospace-related products utilizing laser beam powder-bed fusion processing. The as-built products, utilizing optimized processing parameters, had a Rockwell-C scale (HRC) hardness of 44.6. Following heat treatments which included annealing at 704 °C, HIP at ~926 °C (average), and HIP + anneal, the HRC hardnesses were observed to be 43.9, 40.7, and 40.4, respectively. The corresponding tensile yield stress, UTS, and elongation for these heat treatments averaged 1.19 GPa, 1.22 GPa, 8.7%; 1.03 GPa, 1.08 GPa, 16.7%; 1.04 GPa, 1.09 GPa, 16.1%, respectively. The HIP yield strength and elongation of 1.03 GPa and 16.7% are comparable to the best commercial, wrought Ti-6Al-4V products. The corresponding HIP component microstructures consisted of elongated small grains (~125 microns diameter) containing fine, alpha/beta lamellae. MDPI 2021-06-02 /pmc/articles/PMC8199647/ /pubmed/34199584 http://dx.doi.org/10.3390/ma14113028 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Varela, Jaime Arrieta, Edel Paliwal, Muktesh Marucci, Mike Sandoval, Jose H. Gonzalez, Jose A. McWilliams, Brandon Murr, Lawrence E. Wicker, Ryan B. Medina, Francisco Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion |
title | Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion |
title_full | Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion |
title_fullStr | Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion |
title_full_unstemmed | Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion |
title_short | Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion |
title_sort | investigation of microstructure and mechanical properties for ti-6al-4v alloy parts produced using non-spherical precursor powder by laser powder bed fusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199647/ https://www.ncbi.nlm.nih.gov/pubmed/34199584 http://dx.doi.org/10.3390/ma14113028 |
work_keys_str_mv | AT varelajaime investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT arrietaedel investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT paliwalmuktesh investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT maruccimike investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT sandovaljoseh investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT gonzalezjosea investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT mcwilliamsbrandon investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT murrlawrencee investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT wickerryanb investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion AT medinafrancisco investigationofmicrostructureandmechanicalpropertiesforti6al4valloypartsproducedusingnonsphericalprecursorpowderbylaserpowderbedfusion |