Cargando…
An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones
Traditional pattern recognition approaches have gained a lot of popularity. However, these are largely dependent upon manual feature extraction, which makes the generalized model obscure. The sequences of accelerometer data recorded can be classified by specialized smartphones into well known moveme...
Autores principales: | Ankita, Rani, Shalli, Babbar, Himanshi, Coleman, Sonya, Singh, Aman, Aljahdali, Hani Moaiteq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199714/ https://www.ncbi.nlm.nih.gov/pubmed/34199559 http://dx.doi.org/10.3390/s21113845 |
Ejemplares similares
-
An Efficient CNN-Based Deep Learning Model to Detect Malware Attacks (CNN-DMA) in 5G-IoT Healthcare Applications
por: Anand, Ankita, et al.
Publicado: (2021) -
Improvement of energy conservation using blockchain-enabled cognitive wireless networks for smart cities
por: Rani, Shalli, et al.
Publicado: (2022) -
A Deep Learning Based Approach for Patient Pulmonary CT Image Screening to Predict Coronavirus (SARS-CoV-2) Infection
por: Verma, Parag, et al.
Publicado: (2021) -
Detection of Android Malware in the Internet of Things through the K-Nearest Neighbor Algorithm
por: Babbar, Himanshi, et al.
Publicado: (2023) -
Blockchain Enabled Transparent and Anti-Counterfeiting Supply of COVID-19 Vaccine Vials
por: Chauhan, Harsha, et al.
Publicado: (2021)