Cargando…
Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway
The aim of the study was to evaluate the influence of vitamin K2 (VK2) supplementation on the sphingolipid metabolism pathway in palmitate-induced insulin resistant hepatocytes. The study was carried out on human hepatocellular carcinoma cells (HepG2) incubated with VK2 and/or palmitic acid (PA). Th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199730/ https://www.ncbi.nlm.nih.gov/pubmed/34204938 http://dx.doi.org/10.3390/molecules26113377 |
_version_ | 1783707445988687872 |
---|---|
author | Kołakowski, Adrian Kurzyna, Piotr F. Żywno, Hubert Bzdęga, Wiktor Harasim-Symbor, Ewa Chabowski, Adrian Konstantynowicz-Nowicka, Karolina |
author_facet | Kołakowski, Adrian Kurzyna, Piotr F. Żywno, Hubert Bzdęga, Wiktor Harasim-Symbor, Ewa Chabowski, Adrian Konstantynowicz-Nowicka, Karolina |
author_sort | Kołakowski, Adrian |
collection | PubMed |
description | The aim of the study was to evaluate the influence of vitamin K2 (VK2) supplementation on the sphingolipid metabolism pathway in palmitate-induced insulin resistant hepatocytes. The study was carried out on human hepatocellular carcinoma cells (HepG2) incubated with VK2 and/or palmitic acid (PA). The concentrations of sphingolipids were measured by high-performance liquid chromatography. The expression of enzymes from the sphingolipid pathway was assessed by Western blotting. The same technique was used in order to determine changes in the expression of the proteins from the insulin signaling pathway in the cells. Simultaneous incubation of HepG2 cells with palmitate and VK2 elevated accumulation of sphinganine and ceramide with increased expression of enzymes from the ceramide de novo synthesis pathway. HepG2 treatment with palmitate and VK2 significantly decreased the insulin-stimulated expression ratio of insulin signaling proteins. Moreover, we observed that the presence of PA w VK2 increased fatty acid transport protein 2 expression. Our study showed that VK2 activated the ceramide de novo synthesis pathway, which was confirmed by the increase in enzymes expression. VK2 also intensified fatty acid uptake, ensuring substrates for sphingolipid synthesis through the de novo pathway. Furthermore, increased concentration of sphingolipids, mainly sphinganine, inhibited insulin pathway proteins phosphorylation, increasing insulin resistance development. |
format | Online Article Text |
id | pubmed-8199730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81997302021-06-14 Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway Kołakowski, Adrian Kurzyna, Piotr F. Żywno, Hubert Bzdęga, Wiktor Harasim-Symbor, Ewa Chabowski, Adrian Konstantynowicz-Nowicka, Karolina Molecules Article The aim of the study was to evaluate the influence of vitamin K2 (VK2) supplementation on the sphingolipid metabolism pathway in palmitate-induced insulin resistant hepatocytes. The study was carried out on human hepatocellular carcinoma cells (HepG2) incubated with VK2 and/or palmitic acid (PA). The concentrations of sphingolipids were measured by high-performance liquid chromatography. The expression of enzymes from the sphingolipid pathway was assessed by Western blotting. The same technique was used in order to determine changes in the expression of the proteins from the insulin signaling pathway in the cells. Simultaneous incubation of HepG2 cells with palmitate and VK2 elevated accumulation of sphinganine and ceramide with increased expression of enzymes from the ceramide de novo synthesis pathway. HepG2 treatment with palmitate and VK2 significantly decreased the insulin-stimulated expression ratio of insulin signaling proteins. Moreover, we observed that the presence of PA w VK2 increased fatty acid transport protein 2 expression. Our study showed that VK2 activated the ceramide de novo synthesis pathway, which was confirmed by the increase in enzymes expression. VK2 also intensified fatty acid uptake, ensuring substrates for sphingolipid synthesis through the de novo pathway. Furthermore, increased concentration of sphingolipids, mainly sphinganine, inhibited insulin pathway proteins phosphorylation, increasing insulin resistance development. MDPI 2021-06-03 /pmc/articles/PMC8199730/ /pubmed/34204938 http://dx.doi.org/10.3390/molecules26113377 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kołakowski, Adrian Kurzyna, Piotr F. Żywno, Hubert Bzdęga, Wiktor Harasim-Symbor, Ewa Chabowski, Adrian Konstantynowicz-Nowicka, Karolina Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway |
title | Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway |
title_full | Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway |
title_fullStr | Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway |
title_full_unstemmed | Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway |
title_short | Vitamin K2 as a New Modulator of the Ceramide De Novo Synthesis Pathway |
title_sort | vitamin k2 as a new modulator of the ceramide de novo synthesis pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199730/ https://www.ncbi.nlm.nih.gov/pubmed/34204938 http://dx.doi.org/10.3390/molecules26113377 |
work_keys_str_mv | AT kołakowskiadrian vitamink2asanewmodulatoroftheceramidedenovosynthesispathway AT kurzynapiotrf vitamink2asanewmodulatoroftheceramidedenovosynthesispathway AT zywnohubert vitamink2asanewmodulatoroftheceramidedenovosynthesispathway AT bzdegawiktor vitamink2asanewmodulatoroftheceramidedenovosynthesispathway AT harasimsymborewa vitamink2asanewmodulatoroftheceramidedenovosynthesispathway AT chabowskiadrian vitamink2asanewmodulatoroftheceramidedenovosynthesispathway AT konstantynowicznowickakarolina vitamink2asanewmodulatoroftheceramidedenovosynthesispathway |