Cargando…
Knowledge and Geo-Object Based Graph Convolutional Network for Remote Sensing Semantic Segmentation
Pixel-based semantic segmentation models fail to effectively express geographic objects and their topological relationships. Therefore, in semantic segmentation of remote sensing images, these models fail to avoid salt-and-pepper effects and cannot achieve high accuracy either. To solve these proble...
Autores principales: | Cui, Wei, Yao, Meng, Hao, Yuanjie, Wang, Ziwei, He, Xin, Wu, Weijie, Li, Jie, Zhao, Huilin, Xia, Cong, Wang, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199747/ https://www.ncbi.nlm.nih.gov/pubmed/34199626 http://dx.doi.org/10.3390/s21113848 |
Ejemplares similares
-
W-Net: Convolutional neural network for segmenting remote sensing images by dual path semantics
por: Liu, Guangjie, et al.
Publicado: (2023) -
FGCN: Image-Fused Point Cloud Semantic Segmentation with Fusion Graph Convolutional Network
por: Zhang, Kun, et al.
Publicado: (2023) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Zhong, Bo, et al.
Publicado: (2021) -
Semantic Segmentation of Hyperspectral Remote Sensing Images Based on PSE-UNet Model
por: Li, Jiaju, et al.
Publicado: (2022) -
Convolutional Neural Networks-Based Object Detection Algorithm by Jointing Semantic Segmentation for Images
por: Qiang, Baohua, et al.
Publicado: (2020)