Cargando…
Using Artificial Neural Networks to Predict Influences of Heterogeneity on Rock Strength at Different Strain Rates
Pre-existing cracks and associated filling materials cause the significant heterogeneity of natural rocks and rock masses. The induced heterogeneity changes the rock properties. This paper targets the gap in the existing literature regarding the adopting of artificial neural network approaches to ef...
Autores principales: | Jiang, Sheng, Sharafisafa, Mansour, Shen, Luming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199871/ https://www.ncbi.nlm.nih.gov/pubmed/34204967 http://dx.doi.org/10.3390/ma14113042 |
Ejemplares similares
-
Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks
por: Hadzima-Nyarko, Marijana, et al.
Publicado: (2019) -
Rates and Rocks: Strengths and Weaknesses of Molecular Dating Methods
por: Guindon, Stéphane
Publicado: (2020) -
Estimation of rocks’ failure parameters from drilling data by using artificial neural network
por: Siddig, Osama, et al.
Publicado: (2023) -
Research on the Reasonable Grouting Strength of Rock-Like Samples in Different Strengths
por: Wang, Yan, et al.
Publicado: (2020) -
Physical simulation of the influence of the original rock strength on the compaction characteristics of caving rock in longwall goaf
por: Qin, Yan, et al.
Publicado: (2022)