Cargando…
Analysis of Crack Width Development in Reinforced Concrete Beams
The reliability and durability of reinforced concrete structures depend on the amount of concrete cracking. The risk associated with cracks generates a need for diagnostic methods for the evaluation of reinforced concrete structures. This paper presents the results of a study of 10 single-span reinf...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199898/ https://www.ncbi.nlm.nih.gov/pubmed/34204974 http://dx.doi.org/10.3390/ma14113043 |
Sumario: | The reliability and durability of reinforced concrete structures depend on the amount of concrete cracking. The risk associated with cracks generates a need for diagnostic methods for the evaluation of reinforced concrete structures. This paper presents the results of a study of 10 single-span reinforced concrete beams to follow the process of crack formation and changes in their width. The beams were loaded to failure with two forces in a monotonic manner with unloading and in a cyclic manner. Continuous observation of the crack formation process was provided by the digital image correlation system. The simplified method for estimating the maximum crack width is proposed. The presented results confirmed the stochastic character of the process of crack formation and development. The maximum crack widths calculated on the basis of the proposed formula were on the safe side in relation to those calculated according to Eurocode 2. It was also confirmed that the distances between cracks do not depend on the loading manner. Hence the density function describing the distribution of distances between cracks can be used to assess the condition of reinforced concrete elements. The research has also shown the suitability of the DIC system (ARAMIS) for testing concrete elements. |
---|