Cargando…
BET Protein-Mediated Transcriptional Regulation in Heart Failure
Heart failure is a complex disease process with underlying aberrations in neurohormonal systems that promote dysregulated cellular signaling and gene transcription. Over the past 10 years, the advent of small-molecule inhibitors that target transcriptional machinery has demonstrated the importance o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199980/ https://www.ncbi.nlm.nih.gov/pubmed/34199719 http://dx.doi.org/10.3390/ijms22116059 |
_version_ | 1783707503095185408 |
---|---|
author | Ijaz, Talha Burke, Michael A. |
author_facet | Ijaz, Talha Burke, Michael A. |
author_sort | Ijaz, Talha |
collection | PubMed |
description | Heart failure is a complex disease process with underlying aberrations in neurohormonal systems that promote dysregulated cellular signaling and gene transcription. Over the past 10 years, the advent of small-molecule inhibitors that target transcriptional machinery has demonstrated the importance of the bromodomain and extraterminal (BET) family of epigenetic reader proteins in regulating gene transcription in multiple mouse models of cardiomyopathy. BETs bind to acetylated histone tails and transcription factors to integrate disparate stress signaling networks into a defined gene expression program. Under myocardial stress, BRD4, a BET family member, is recruited to superenhancers and promoter regions of inflammatory and profibrotic genes to promote transcription elongation. Whole-transcriptome analysis of BET-dependent gene networks suggests a major role of nuclear-factor kappa b and transforming growth factor-beta in the development of cardiac fibrosis and systolic dysfunction. Recent investigations also suggest a prominent role of BRD4 in maintaining cardiomyocyte mitochondrial respiration under basal conditions. In this review, we summarize the data from preclinical heart failure studies that explore the role of BET-regulated transcriptional mechanisms and delve into landmark studies that define BET bromodomain-independent processes involved in cardiac homeostasis. |
format | Online Article Text |
id | pubmed-8199980 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81999802021-06-14 BET Protein-Mediated Transcriptional Regulation in Heart Failure Ijaz, Talha Burke, Michael A. Int J Mol Sci Review Heart failure is a complex disease process with underlying aberrations in neurohormonal systems that promote dysregulated cellular signaling and gene transcription. Over the past 10 years, the advent of small-molecule inhibitors that target transcriptional machinery has demonstrated the importance of the bromodomain and extraterminal (BET) family of epigenetic reader proteins in regulating gene transcription in multiple mouse models of cardiomyopathy. BETs bind to acetylated histone tails and transcription factors to integrate disparate stress signaling networks into a defined gene expression program. Under myocardial stress, BRD4, a BET family member, is recruited to superenhancers and promoter regions of inflammatory and profibrotic genes to promote transcription elongation. Whole-transcriptome analysis of BET-dependent gene networks suggests a major role of nuclear-factor kappa b and transforming growth factor-beta in the development of cardiac fibrosis and systolic dysfunction. Recent investigations also suggest a prominent role of BRD4 in maintaining cardiomyocyte mitochondrial respiration under basal conditions. In this review, we summarize the data from preclinical heart failure studies that explore the role of BET-regulated transcriptional mechanisms and delve into landmark studies that define BET bromodomain-independent processes involved in cardiac homeostasis. MDPI 2021-06-04 /pmc/articles/PMC8199980/ /pubmed/34199719 http://dx.doi.org/10.3390/ijms22116059 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Ijaz, Talha Burke, Michael A. BET Protein-Mediated Transcriptional Regulation in Heart Failure |
title | BET Protein-Mediated Transcriptional Regulation in Heart Failure |
title_full | BET Protein-Mediated Transcriptional Regulation in Heart Failure |
title_fullStr | BET Protein-Mediated Transcriptional Regulation in Heart Failure |
title_full_unstemmed | BET Protein-Mediated Transcriptional Regulation in Heart Failure |
title_short | BET Protein-Mediated Transcriptional Regulation in Heart Failure |
title_sort | bet protein-mediated transcriptional regulation in heart failure |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199980/ https://www.ncbi.nlm.nih.gov/pubmed/34199719 http://dx.doi.org/10.3390/ijms22116059 |
work_keys_str_mv | AT ijaztalha betproteinmediatedtranscriptionalregulationinheartfailure AT burkemichaela betproteinmediatedtranscriptionalregulationinheartfailure |