Cargando…
Effects of Padel Competition on Brain Health-Related Myokines
Padel is becoming one of the most widespread racket sports that may have potential health benefits. Considering that several myokines mediate the cross-talk between skeletal muscles and the brain, exerting positive effects on brain health status, this study was designed to evaluate the responses of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200019/ https://www.ncbi.nlm.nih.gov/pubmed/34199730 http://dx.doi.org/10.3390/ijerph18116042 |
Sumario: | Padel is becoming one of the most widespread racket sports that may have potential health benefits. Considering that several myokines mediate the cross-talk between skeletal muscles and the brain, exerting positive effects on brain health status, this study was designed to evaluate the responses of brain-derived neurotrophic factor (BDNF), leukemia inhibitory factor (LIF), and irisin (IR) to padel competition in trained players and to determine whether these responses were sex-dependent. Twenty-four trained padel players (14 women and 10 men with a mean age of 27.8 ± 6.3 years) participated voluntarily in this study. Circulating levels of BDNF, LIF, and IR were assessed before and after simulated padel competition (real playing time, 27.8 ± 8.49 min; relative intensity, 75.2 ± 7.9% maximum heart rate). Except for BDNF responses observed in female players (increasing from 1531.12 ± 269.09 to 1768.56 ± 410.75 ng/mL), no significant changes in LIF and IR concentrations were reported after padel competition. In addition, no sex-related differences were found. Moreover, significant associations between IR and BDNF were established at both pre- and post-competition. Our results suggest that while competitive padel practice stimulates BDNF response in female players, padel competition failed to boost the release of LIF and IR. Future studies are needed to further explore the role of these exercise-induced myokines in the regulation of brain functions and to identify the field sports that can contribute to myokine-mediated muscle–brain crosstalk. |
---|