Cargando…
Radar Sensing for Activity Classification in Elderly People Exploiting Micro-Doppler Signatures Using Machine Learning
The health status of an elderly person can be identified by examining the additive effects of aging along with disease linked to it and can lead to ‘unstable incapacity’. This health status is determined by the apparent decline of independence in activities of daily living (ADLs). Detecting ADLs pro...
Autores principales: | Taylor, William, Dashtipour, Kia, Shah, Syed Aziz, Hussain, Amir, Abbasi, Qammer H., Imran, Muhammad A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200051/ https://www.ncbi.nlm.nih.gov/pubmed/34199814 http://dx.doi.org/10.3390/s21113881 |
Ejemplares similares
-
A Review of the State of the Art in Non-Contact Sensing for COVID-19
por: Taylor, William, et al.
Publicado: (2020) -
An Intelligent Non-Invasive Real-Time Human Activity Recognition System for Next-Generation Healthcare
por: Taylor, William, et al.
Publicado: (2020) -
Editorial for the Special Issue on Security and Sensing Devices for Healthcare Technologies
por: Shah, Syed Aziz, et al.
Publicado: (2021) -
Doppler radar physiological sensing
por: Boric-Lubecke, Olga, et al.
Publicado: (2016) -
Apathy Classification Based on Doppler Radar Image for the Elderly Person
por: Nojiri, Naoto, et al.
Publicado: (2020)