Cargando…
Development of a novel machine learning model to predict presence of nonalcoholic steatohepatitis
OBJECTIVE: To develop a computer model to predict patients with nonalcoholic steatohepatitis (NASH) using machine learning (ML). MATERIALS AND METHODS: This retrospective study utilized two databases: a) the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) nonalcoholic fatty...
Autores principales: | Docherty, Matt, Regnier, Stephane A, Capkun, Gorana, Balp, Maria-Magdalena, Ye, Qin, Janssens, Nico, Tietz, Andreas, Löffler, Jürgen, Cai, Jennifer, Pedrosa, Marcos C, Schattenberg, Jörn M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200272/ https://www.ncbi.nlm.nih.gov/pubmed/33684933 http://dx.doi.org/10.1093/jamia/ocab003 |
Ejemplares similares
-
NASHmap: clinical utility of a machine learning model to identify patients at risk of NASH in real-world settings
por: Schattenberg, Jörn M., et al.
Publicado: (2023) -
The burden of nonalcoholic steatohepatitis (NASH) in the United States
por: Tapper, Elliot B., et al.
Publicado: (2023) -
Assessing physician preferences on future therapeutic options and diagnostic practices in non-alcoholic steatohepatitis
por: Cook, Nigel, et al.
Publicado: (2020) -
Prevalence and risk factors of nonalcoholic steatohepatitis with significant fibrosis in people with HIV
por: Michel, Maurice, et al.
Publicado: (2022) -
Noninvasive Testing Using Magnetic Resonance Imaging Techniques as Outcomes in Nonalcoholic Steatohepatitis Clinical Trials: How Full Is the Glass?
por: Noureddin, Nabil, et al.
Publicado: (2020)