Cargando…

Cortical gamma-band resonance preferentially transmits coherent input

Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We use optogenetics to generate depolarizing currents in pyramidal neurons of the cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output....

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, Christopher Murphy, Ni, Jianguang, Wunderle, Thomas, Jendritza, Patrick, Lazar, Andreea, Diester, Ilka, Fries, Pascal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200519/
https://www.ncbi.nlm.nih.gov/pubmed/33951439
http://dx.doi.org/10.1016/j.celrep.2021.109083
_version_ 1783707622431522816
author Lewis, Christopher Murphy
Ni, Jianguang
Wunderle, Thomas
Jendritza, Patrick
Lazar, Andreea
Diester, Ilka
Fries, Pascal
author_facet Lewis, Christopher Murphy
Ni, Jianguang
Wunderle, Thomas
Jendritza, Patrick
Lazar, Andreea
Diester, Ilka
Fries, Pascal
author_sort Lewis, Christopher Murphy
collection PubMed
description Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We use optogenetics to generate depolarizing currents in pyramidal neurons of the cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. The cortex transforms constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increases the strength and frequency of synchronization. Slow, symmetric excitation profiles reveal hysteresis of power and frequency. White-noise input sequences enable causal analysis of network transmission, establishing that the cortical gamma-band resonance preferentially transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncover a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission.
format Online
Article
Text
id pubmed-8200519
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-82005192021-06-14 Cortical gamma-band resonance preferentially transmits coherent input Lewis, Christopher Murphy Ni, Jianguang Wunderle, Thomas Jendritza, Patrick Lazar, Andreea Diester, Ilka Fries, Pascal Cell Rep Article Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We use optogenetics to generate depolarizing currents in pyramidal neurons of the cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. The cortex transforms constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increases the strength and frequency of synchronization. Slow, symmetric excitation profiles reveal hysteresis of power and frequency. White-noise input sequences enable causal analysis of network transmission, establishing that the cortical gamma-band resonance preferentially transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncover a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission. 2021-05-04 /pmc/articles/PMC8200519/ /pubmed/33951439 http://dx.doi.org/10.1016/j.celrep.2021.109083 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Lewis, Christopher Murphy
Ni, Jianguang
Wunderle, Thomas
Jendritza, Patrick
Lazar, Andreea
Diester, Ilka
Fries, Pascal
Cortical gamma-band resonance preferentially transmits coherent input
title Cortical gamma-band resonance preferentially transmits coherent input
title_full Cortical gamma-band resonance preferentially transmits coherent input
title_fullStr Cortical gamma-band resonance preferentially transmits coherent input
title_full_unstemmed Cortical gamma-band resonance preferentially transmits coherent input
title_short Cortical gamma-band resonance preferentially transmits coherent input
title_sort cortical gamma-band resonance preferentially transmits coherent input
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200519/
https://www.ncbi.nlm.nih.gov/pubmed/33951439
http://dx.doi.org/10.1016/j.celrep.2021.109083
work_keys_str_mv AT lewischristophermurphy corticalgammabandresonancepreferentiallytransmitscoherentinput
AT nijianguang corticalgammabandresonancepreferentiallytransmitscoherentinput
AT wunderlethomas corticalgammabandresonancepreferentiallytransmitscoherentinput
AT jendritzapatrick corticalgammabandresonancepreferentiallytransmitscoherentinput
AT lazarandreea corticalgammabandresonancepreferentiallytransmitscoherentinput
AT diesterilka corticalgammabandresonancepreferentiallytransmitscoherentinput
AT friespascal corticalgammabandresonancepreferentiallytransmitscoherentinput