Cargando…

Estimating Systolic Blood Pressure Intervention Trial Participant Posttrial Survival Using Pooled Epidemiologic Cohort Data

BACKGROUND: Intensive systolic blood pressure treatment (<120 mm Hg) in SPRINT (Systolic Blood Pressure Intervention Trial) improved survival compared with standard treatment (<140 mm Hg) over a median follow‐up of 3.3 years. We projected life expectancy after observed follow‐up in SPRINT usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellows, Brandon K., Zhang, Yiyi, Zhang, Zugui, Lloyd‐Jones, Donald M., Bress, Adam P., King, Jordan B., Kolm, Paul, Cushman, William C., Johnson, Karen C., Tamariz, Leonardo, Oelsner, Elizabeth C., Shea, Steven, Newman, Anne B., Ives, Diane G., Couper, David, Moran, Andrew E., Weintraub, William S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200698/
https://www.ncbi.nlm.nih.gov/pubmed/33955229
http://dx.doi.org/10.1161/JAHA.120.020361
_version_ 1783707661503561728
author Bellows, Brandon K.
Zhang, Yiyi
Zhang, Zugui
Lloyd‐Jones, Donald M.
Bress, Adam P.
King, Jordan B.
Kolm, Paul
Cushman, William C.
Johnson, Karen C.
Tamariz, Leonardo
Oelsner, Elizabeth C.
Shea, Steven
Newman, Anne B.
Ives, Diane G.
Couper, David
Moran, Andrew E.
Weintraub, William S.
author_facet Bellows, Brandon K.
Zhang, Yiyi
Zhang, Zugui
Lloyd‐Jones, Donald M.
Bress, Adam P.
King, Jordan B.
Kolm, Paul
Cushman, William C.
Johnson, Karen C.
Tamariz, Leonardo
Oelsner, Elizabeth C.
Shea, Steven
Newman, Anne B.
Ives, Diane G.
Couper, David
Moran, Andrew E.
Weintraub, William S.
author_sort Bellows, Brandon K.
collection PubMed
description BACKGROUND: Intensive systolic blood pressure treatment (<120 mm Hg) in SPRINT (Systolic Blood Pressure Intervention Trial) improved survival compared with standard treatment (<140 mm Hg) over a median follow‐up of 3.3 years. We projected life expectancy after observed follow‐up in SPRINT using SPRINT‐eligible participants in the NHLBI‐PCS (National Heart, Lung, and Blood Institute Pooled Cohorts Study). METHODS AND RESULTS: We used propensity scores to weight SPRINT‐eligible NHLBI‐PCS participants to resemble SPRINT participants. In SPRINT participants, we estimated in‐trial survival (<4 years) using a time‐based flexible parametric survival model. In SPRINT‐eligible NHLBI‐PCS participants, we estimated posttrial survival (≥4 years) using an age‐based flexible parametric survival model and applied the formula to SPRINT participants to predict posttrial survival. We projected overall life expectancy for each SPRINT participant and compared it to parametric regression (eg, Gompertz) projections based on SPRINT data alone. We included 8584 SPRINT and 10 593 SPRINT‐eligible NHLBI‐PCS participants. After propensity weighting, mean (SD) age was 67.9 (9.4) and 68.2 (8.8) years, and 35.5% and 37.6% were women in SPRINT and NHLBI‐PCS, respectively. Using the NHLBI‐PCS–based method, projected mean life expectancy from randomization was 21.0 (7.4) years with intensive and 19.1 (7.2) years with standard treatment. Using the Gompertz regression, life expectancy was 11.2 (2.3) years with intensive and 10.5 (2.2) years with standard treatment. CONCLUSIONS: Combining SPRINT and NHLBI‐PCS observed data likely offers a more realistic estimate of life expectancy than parametrically extrapolating SPRINT data alone. These results offer insight into the potential long‐term effectiveness of intensive SBP goals.
format Online
Article
Text
id pubmed-8200698
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-82006982021-06-15 Estimating Systolic Blood Pressure Intervention Trial Participant Posttrial Survival Using Pooled Epidemiologic Cohort Data Bellows, Brandon K. Zhang, Yiyi Zhang, Zugui Lloyd‐Jones, Donald M. Bress, Adam P. King, Jordan B. Kolm, Paul Cushman, William C. Johnson, Karen C. Tamariz, Leonardo Oelsner, Elizabeth C. Shea, Steven Newman, Anne B. Ives, Diane G. Couper, David Moran, Andrew E. Weintraub, William S. J Am Heart Assoc Original Research BACKGROUND: Intensive systolic blood pressure treatment (<120 mm Hg) in SPRINT (Systolic Blood Pressure Intervention Trial) improved survival compared with standard treatment (<140 mm Hg) over a median follow‐up of 3.3 years. We projected life expectancy after observed follow‐up in SPRINT using SPRINT‐eligible participants in the NHLBI‐PCS (National Heart, Lung, and Blood Institute Pooled Cohorts Study). METHODS AND RESULTS: We used propensity scores to weight SPRINT‐eligible NHLBI‐PCS participants to resemble SPRINT participants. In SPRINT participants, we estimated in‐trial survival (<4 years) using a time‐based flexible parametric survival model. In SPRINT‐eligible NHLBI‐PCS participants, we estimated posttrial survival (≥4 years) using an age‐based flexible parametric survival model and applied the formula to SPRINT participants to predict posttrial survival. We projected overall life expectancy for each SPRINT participant and compared it to parametric regression (eg, Gompertz) projections based on SPRINT data alone. We included 8584 SPRINT and 10 593 SPRINT‐eligible NHLBI‐PCS participants. After propensity weighting, mean (SD) age was 67.9 (9.4) and 68.2 (8.8) years, and 35.5% and 37.6% were women in SPRINT and NHLBI‐PCS, respectively. Using the NHLBI‐PCS–based method, projected mean life expectancy from randomization was 21.0 (7.4) years with intensive and 19.1 (7.2) years with standard treatment. Using the Gompertz regression, life expectancy was 11.2 (2.3) years with intensive and 10.5 (2.2) years with standard treatment. CONCLUSIONS: Combining SPRINT and NHLBI‐PCS observed data likely offers a more realistic estimate of life expectancy than parametrically extrapolating SPRINT data alone. These results offer insight into the potential long‐term effectiveness of intensive SBP goals. John Wiley and Sons Inc. 2021-05-06 /pmc/articles/PMC8200698/ /pubmed/33955229 http://dx.doi.org/10.1161/JAHA.120.020361 Text en © 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Research
Bellows, Brandon K.
Zhang, Yiyi
Zhang, Zugui
Lloyd‐Jones, Donald M.
Bress, Adam P.
King, Jordan B.
Kolm, Paul
Cushman, William C.
Johnson, Karen C.
Tamariz, Leonardo
Oelsner, Elizabeth C.
Shea, Steven
Newman, Anne B.
Ives, Diane G.
Couper, David
Moran, Andrew E.
Weintraub, William S.
Estimating Systolic Blood Pressure Intervention Trial Participant Posttrial Survival Using Pooled Epidemiologic Cohort Data
title Estimating Systolic Blood Pressure Intervention Trial Participant Posttrial Survival Using Pooled Epidemiologic Cohort Data
title_full Estimating Systolic Blood Pressure Intervention Trial Participant Posttrial Survival Using Pooled Epidemiologic Cohort Data
title_fullStr Estimating Systolic Blood Pressure Intervention Trial Participant Posttrial Survival Using Pooled Epidemiologic Cohort Data
title_full_unstemmed Estimating Systolic Blood Pressure Intervention Trial Participant Posttrial Survival Using Pooled Epidemiologic Cohort Data
title_short Estimating Systolic Blood Pressure Intervention Trial Participant Posttrial Survival Using Pooled Epidemiologic Cohort Data
title_sort estimating systolic blood pressure intervention trial participant posttrial survival using pooled epidemiologic cohort data
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200698/
https://www.ncbi.nlm.nih.gov/pubmed/33955229
http://dx.doi.org/10.1161/JAHA.120.020361
work_keys_str_mv AT bellowsbrandonk estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT zhangyiyi estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT zhangzugui estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT lloydjonesdonaldm estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT bressadamp estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT kingjordanb estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT kolmpaul estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT cushmanwilliamc estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT johnsonkarenc estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT tamarizleonardo estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT oelsnerelizabethc estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT sheasteven estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT newmananneb estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT ivesdianeg estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT couperdavid estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT moranandrewe estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata
AT weintraubwilliams estimatingsystolicbloodpressureinterventiontrialparticipantposttrialsurvivalusingpooledepidemiologiccohortdata