Cargando…
Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
BACKGROUND: Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200722/ https://www.ncbi.nlm.nih.gov/pubmed/33899504 http://dx.doi.org/10.1161/JAHA.120.019905 |
_version_ | 1783707667283312640 |
---|---|
author | Chorba, John S. Shapiro, Avi M. Le, Le Maidens, John Prince, John Pham, Steve Kanzawa, Mia M. Barbosa, Daniel N. Currie, Caroline Brooks, Catherine White, Brent E. Huskin, Anna Paek, Jason Geocaris, Jack Elnathan, Dinatu Ronquillo, Ria Kim, Roy Alam, Zenith H. Mahadevan, Vaikom S. Fuller, Sophie G. Stalker, Grant W. Bravo, Sara A. Jean, Dina Lee, John J. Gjergjindreaj, Medeona Mihos, Christos G. Forman, Steven T. Venkatraman, Subramaniam McCarthy, Patrick M. Thomas, James D. |
author_facet | Chorba, John S. Shapiro, Avi M. Le, Le Maidens, John Prince, John Pham, Steve Kanzawa, Mia M. Barbosa, Daniel N. Currie, Caroline Brooks, Catherine White, Brent E. Huskin, Anna Paek, Jason Geocaris, Jack Elnathan, Dinatu Ronquillo, Ria Kim, Roy Alam, Zenith H. Mahadevan, Vaikom S. Fuller, Sophie G. Stalker, Grant W. Bravo, Sara A. Jean, Dina Lee, John J. Gjergjindreaj, Medeona Mihos, Christos G. Forman, Steven T. Venkatraman, Subramaniam McCarthy, Patrick M. Thomas, James D. |
author_sort | Chorba, John S. |
collection | PubMed |
description | BACKGROUND: Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. METHODS AND RESULTS: Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate‐to‐severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate‐to‐severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. CONCLUSIONS: The deep learning algorithm’s ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front‐line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. REGISTRATION: URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806. |
format | Online Article Text |
id | pubmed-8200722 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82007222021-06-15 Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform Chorba, John S. Shapiro, Avi M. Le, Le Maidens, John Prince, John Pham, Steve Kanzawa, Mia M. Barbosa, Daniel N. Currie, Caroline Brooks, Catherine White, Brent E. Huskin, Anna Paek, Jason Geocaris, Jack Elnathan, Dinatu Ronquillo, Ria Kim, Roy Alam, Zenith H. Mahadevan, Vaikom S. Fuller, Sophie G. Stalker, Grant W. Bravo, Sara A. Jean, Dina Lee, John J. Gjergjindreaj, Medeona Mihos, Christos G. Forman, Steven T. Venkatraman, Subramaniam McCarthy, Patrick M. Thomas, James D. J Am Heart Assoc Original Research BACKGROUND: Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. METHODS AND RESULTS: Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate‐to‐severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate‐to‐severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. CONCLUSIONS: The deep learning algorithm’s ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front‐line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. REGISTRATION: URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806. John Wiley and Sons Inc. 2021-04-26 /pmc/articles/PMC8200722/ /pubmed/33899504 http://dx.doi.org/10.1161/JAHA.120.019905 Text en © 2021 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Original Research Chorba, John S. Shapiro, Avi M. Le, Le Maidens, John Prince, John Pham, Steve Kanzawa, Mia M. Barbosa, Daniel N. Currie, Caroline Brooks, Catherine White, Brent E. Huskin, Anna Paek, Jason Geocaris, Jack Elnathan, Dinatu Ronquillo, Ria Kim, Roy Alam, Zenith H. Mahadevan, Vaikom S. Fuller, Sophie G. Stalker, Grant W. Bravo, Sara A. Jean, Dina Lee, John J. Gjergjindreaj, Medeona Mihos, Christos G. Forman, Steven T. Venkatraman, Subramaniam McCarthy, Patrick M. Thomas, James D. Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform |
title | Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform |
title_full | Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform |
title_fullStr | Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform |
title_full_unstemmed | Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform |
title_short | Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform |
title_sort | deep learning algorithm for automated cardiac murmur detection via a digital stethoscope platform |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200722/ https://www.ncbi.nlm.nih.gov/pubmed/33899504 http://dx.doi.org/10.1161/JAHA.120.019905 |
work_keys_str_mv | AT chorbajohns deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT shapiroavim deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT lele deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT maidensjohn deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT princejohn deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT phamsteve deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT kanzawamiam deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT barbosadanieln deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT curriecaroline deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT brookscatherine deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT whitebrente deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT huskinanna deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT paekjason deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT geocarisjack deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT elnathandinatu deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT ronquilloria deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT kimroy deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT alamzenithh deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT mahadevanvaikoms deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT fullersophieg deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT stalkergrantw deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT bravosaraa deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT jeandina deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT leejohnj deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT gjergjindreajmedeona deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT mihoschristosg deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT formanstevent deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT venkatramansubramaniam deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT mccarthypatrickm deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform AT thomasjamesd deeplearningalgorithmforautomatedcardiacmurmurdetectionviaadigitalstethoscopeplatform |