Cargando…
Neutrophil Extracellular Traps in Tumor Metastasis: Pathological Functions and Clinical Applications
SIMPLE SUMMARY: Tumor-associated neutrophils constitute an important portion of the infiltrating immune cells in the tumor microenvironment. One of the abilities of neutrophils is forming neutrophil extracellular traps. Recent studies on tumor-associated neutrophils have drawn increasing attention t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200981/ https://www.ncbi.nlm.nih.gov/pubmed/34204148 http://dx.doi.org/10.3390/cancers13112832 |
Sumario: | SIMPLE SUMMARY: Tumor-associated neutrophils constitute an important portion of the infiltrating immune cells in the tumor microenvironment. One of the abilities of neutrophils is forming neutrophil extracellular traps. Recent studies on tumor-associated neutrophils have drawn increasing attention to the role of neutrophil extracellular traps in the tumor microenvironment. There were also some reviews summarize the pro-tumorigenic activity of NETs in tumors. The specific novelty of this article is the specific summarization on the pivotal roles of NETs in tumor invasion-metastasis cascade and the recapitulation on the potential of NETs in clinical applications. ABSTRACT: Neutrophil extracellular trap (NET) formation is an ability of neutrophils to capture and kill pathogens by releasing chromatin scaffolds, along with associated cytotoxic enzymes and proteases, into the extracellular space. NETs are usually stimulated by pathogenic microorganisms and their products, surgical pressure or hypoxia. Interestingly, a number of recent studies suggest that tumor cells can induce NET formation, which in turn confers tumor cell malignancy. Notably, emerging studies indicate that NETs are involved in enhancing local invasion, increasing vascular permeability and facilitating immune escape and colonization, thus promoting tumor metastasis. In this article, we review the pivotal roles of NETs in the tumor metastasis cascade. We also recapitulate the potential of NETs as a cancer prognostic biomarker and therapeutic target. |
---|