Cargando…
Command Recognition Using Binarized Convolutional Neural Network with Voice and Radar Sensors for Human-Vehicle Interaction
Recently, as technology has advanced, the use of in-vehicle infotainment systems has increased, providing many functions. However, if the driver’s attention is diverted to control these systems, it can cause a fatal accident, and thus human–vehicle interaction is becoming more important. Therefore,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201086/ https://www.ncbi.nlm.nih.gov/pubmed/34198830 http://dx.doi.org/10.3390/s21113906 |
Sumario: | Recently, as technology has advanced, the use of in-vehicle infotainment systems has increased, providing many functions. However, if the driver’s attention is diverted to control these systems, it can cause a fatal accident, and thus human–vehicle interaction is becoming more important. Therefore, in this paper, we propose a human–vehicle interaction system to reduce driver distraction during driving. We used voice and continuous-wave radar sensors that require low complexity for application to vehicle environments as resource-constrained platforms. The proposed system applies sensor fusion techniques to improve the limit of single-sensor monitoring. In addition, we used a binarized convolutional neural network algorithm, which significantly reduces the computational workload of the convolutional neural network in command classification. As a result of performance evaluation in noisy and cluttered environments, the proposed system showed a recognition accuracy of 96.4%, an improvement of 7.6% compared to a single voice sensor-based system, and 9.0% compared to a single radar sensor-based system. |
---|