Cargando…
Physical Unclonable Function Based on the Internal State Transitions of a Fibonacci Ring Oscillator
This article introduces a new class of physical unclonable functions (PUFs) based on the Fibonacci ring oscillator (FIRO). The research conducted here proves that before reaching the desired randomness, the oscillator shows a certain degree of repeatability and uniqueness in the initial sequence of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201137/ https://www.ncbi.nlm.nih.gov/pubmed/34200206 http://dx.doi.org/10.3390/s21113920 |
_version_ | 1783707747506716672 |
---|---|
author | Matuszewski, Łukasz Nikonowicz, Jakub Kubczak, Paweł Woźniak, Wiktor |
author_facet | Matuszewski, Łukasz Nikonowicz, Jakub Kubczak, Paweł Woźniak, Wiktor |
author_sort | Matuszewski, Łukasz |
collection | PubMed |
description | This article introduces a new class of physical unclonable functions (PUFs) based on the Fibonacci ring oscillator (FIRO). The research conducted here proves that before reaching the desired randomness, the oscillator shows a certain degree of repeatability and uniqueness in the initial sequence of internal state transitions. The use of an FIRO in conjunction with the restart method makes it possible to obtain a set of short boot sequences, which are processed with an innovative feature extraction algorithm that enables reliable device identification. This approach ensures the reuse of the existing random number generator (RNG), rather than multiplying ring oscillators in a dedicated structure. Moreover, the algorithm for the recovery of the device key from the boot set can be successfully implemented in the authorizing center, thus significantly releasing the resources of authorized low-complexity devices. The proposed methodology provides an easily obtainable key with identifiability, which was proven experimentally on FPGAs from different manufacturers. |
format | Online Article Text |
id | pubmed-8201137 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82011372021-06-15 Physical Unclonable Function Based on the Internal State Transitions of a Fibonacci Ring Oscillator Matuszewski, Łukasz Nikonowicz, Jakub Kubczak, Paweł Woźniak, Wiktor Sensors (Basel) Article This article introduces a new class of physical unclonable functions (PUFs) based on the Fibonacci ring oscillator (FIRO). The research conducted here proves that before reaching the desired randomness, the oscillator shows a certain degree of repeatability and uniqueness in the initial sequence of internal state transitions. The use of an FIRO in conjunction with the restart method makes it possible to obtain a set of short boot sequences, which are processed with an innovative feature extraction algorithm that enables reliable device identification. This approach ensures the reuse of the existing random number generator (RNG), rather than multiplying ring oscillators in a dedicated structure. Moreover, the algorithm for the recovery of the device key from the boot set can be successfully implemented in the authorizing center, thus significantly releasing the resources of authorized low-complexity devices. The proposed methodology provides an easily obtainable key with identifiability, which was proven experimentally on FPGAs from different manufacturers. MDPI 2021-06-07 /pmc/articles/PMC8201137/ /pubmed/34200206 http://dx.doi.org/10.3390/s21113920 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Matuszewski, Łukasz Nikonowicz, Jakub Kubczak, Paweł Woźniak, Wiktor Physical Unclonable Function Based on the Internal State Transitions of a Fibonacci Ring Oscillator |
title | Physical Unclonable Function Based on the Internal State Transitions of a Fibonacci Ring Oscillator |
title_full | Physical Unclonable Function Based on the Internal State Transitions of a Fibonacci Ring Oscillator |
title_fullStr | Physical Unclonable Function Based on the Internal State Transitions of a Fibonacci Ring Oscillator |
title_full_unstemmed | Physical Unclonable Function Based on the Internal State Transitions of a Fibonacci Ring Oscillator |
title_short | Physical Unclonable Function Based on the Internal State Transitions of a Fibonacci Ring Oscillator |
title_sort | physical unclonable function based on the internal state transitions of a fibonacci ring oscillator |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201137/ https://www.ncbi.nlm.nih.gov/pubmed/34200206 http://dx.doi.org/10.3390/s21113920 |
work_keys_str_mv | AT matuszewskiłukasz physicalunclonablefunctionbasedontheinternalstatetransitionsofafibonacciringoscillator AT nikonowiczjakub physicalunclonablefunctionbasedontheinternalstatetransitionsofafibonacciringoscillator AT kubczakpaweł physicalunclonablefunctionbasedontheinternalstatetransitionsofafibonacciringoscillator AT wozniakwiktor physicalunclonablefunctionbasedontheinternalstatetransitionsofafibonacciringoscillator |