Cargando…
Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. During the past decade, novel pathogenic mechanisms of IPF have been elucidated that have shifted the concept of IPF from an inflammatory-driven to an epithelial-driven disease. Dysregulated repair responses in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201174/ https://www.ncbi.nlm.nih.gov/pubmed/34198949 http://dx.doi.org/10.3390/ijms22116107 |
_version_ | 1783707756225626112 |
---|---|
author | Inui, Naoki Sakai, Satoshi Kitagawa, Masatoshi |
author_facet | Inui, Naoki Sakai, Satoshi Kitagawa, Masatoshi |
author_sort | Inui, Naoki |
collection | PubMed |
description | Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. During the past decade, novel pathogenic mechanisms of IPF have been elucidated that have shifted the concept of IPF from an inflammatory-driven to an epithelial-driven disease. Dysregulated repair responses induced by recurrent epithelial cell damage and excessive extracellular matrix accumulation result in pulmonary fibrosis. Although there is currently no curative therapy for IPF, two medications, pirfenidone and nintedanib, have been introduced based on understanding the pathogenesis of the disease. In this review, we discuss advances in understanding IPF pathogenesis, highlighting epithelial–mesenchymal transition (EMT), the ubiquitin-proteasome system, and endothelial cells. TGF-β is a central regulator involved in EMT and pulmonary fibrosis. HECT-, RING finger-, and U-box-type E3 ubiquitin ligases regulate TGF-β-Smad pathway-mediated EMT via the ubiquitin-proteasome pathway. p27 degradation mediated by the SCF-type E3 ligase, Skp2, contributes to the progression of pulmonary fibrosis by promotion of either mesenchymal fibroblast proliferation, EMT, or both. In addition to fibroblasts as key effector cells in myofibroblast differentiation and extracellular matrix deposition, endothelial cells also play a role in the processes of IPF. Endothelial cells can transform into myofibroblasts; therefore, endothelial–mesenchymal transition can be another source of myofibroblasts. |
format | Online Article Text |
id | pubmed-8201174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82011742021-06-15 Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway Inui, Naoki Sakai, Satoshi Kitagawa, Masatoshi Int J Mol Sci Review Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. During the past decade, novel pathogenic mechanisms of IPF have been elucidated that have shifted the concept of IPF from an inflammatory-driven to an epithelial-driven disease. Dysregulated repair responses induced by recurrent epithelial cell damage and excessive extracellular matrix accumulation result in pulmonary fibrosis. Although there is currently no curative therapy for IPF, two medications, pirfenidone and nintedanib, have been introduced based on understanding the pathogenesis of the disease. In this review, we discuss advances in understanding IPF pathogenesis, highlighting epithelial–mesenchymal transition (EMT), the ubiquitin-proteasome system, and endothelial cells. TGF-β is a central regulator involved in EMT and pulmonary fibrosis. HECT-, RING finger-, and U-box-type E3 ubiquitin ligases regulate TGF-β-Smad pathway-mediated EMT via the ubiquitin-proteasome pathway. p27 degradation mediated by the SCF-type E3 ligase, Skp2, contributes to the progression of pulmonary fibrosis by promotion of either mesenchymal fibroblast proliferation, EMT, or both. In addition to fibroblasts as key effector cells in myofibroblast differentiation and extracellular matrix deposition, endothelial cells also play a role in the processes of IPF. Endothelial cells can transform into myofibroblasts; therefore, endothelial–mesenchymal transition can be another source of myofibroblasts. MDPI 2021-06-05 /pmc/articles/PMC8201174/ /pubmed/34198949 http://dx.doi.org/10.3390/ijms22116107 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Inui, Naoki Sakai, Satoshi Kitagawa, Masatoshi Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway |
title | Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway |
title_full | Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway |
title_fullStr | Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway |
title_full_unstemmed | Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway |
title_short | Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway |
title_sort | molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to tgf-β and the ubiquitin-proteasome pathway |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201174/ https://www.ncbi.nlm.nih.gov/pubmed/34198949 http://dx.doi.org/10.3390/ijms22116107 |
work_keys_str_mv | AT inuinaoki molecularpathogenesisofpulmonaryfibrosiswithfocusonpathwaysrelatedtotgfbandtheubiquitinproteasomepathway AT sakaisatoshi molecularpathogenesisofpulmonaryfibrosiswithfocusonpathwaysrelatedtotgfbandtheubiquitinproteasomepathway AT kitagawamasatoshi molecularpathogenesisofpulmonaryfibrosiswithfocusonpathwaysrelatedtotgfbandtheubiquitinproteasomepathway |