Cargando…
High Temporal Resolution Land Use Regression Models with POI Characteristics of the PM(2.5) Distribution in Beijing, China
PM(2.5) is one of the primary components of air pollutants, and it has wide impacts on human health. Land use regression models have the typical disadvantage of low temporal resolution. In this study, various point of interests (POIs) variables are added to the usual predictive variables of the gene...
Autores principales: | Zhang, Yan, Cheng, Hongguang, Huang, Di, Fu, Chunbao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201188/ https://www.ncbi.nlm.nih.gov/pubmed/34200158 http://dx.doi.org/10.3390/ijerph18116143 |
Ejemplares similares
-
Spatial distribution characteristics of PM(2.5) and PM(10) in Xi’an City predicted by land use regression models
por: Han, Li, et al.
Publicado: (2020) -
Assessment of the Dynamic Exposure to PM(2.5) Based on Hourly Cell Phone Location and Land Use Regression Model in Beijing
por: Liu, Junli, et al.
Publicado: (2021) -
Spatio-Temporal Variation Characteristics of PM(2.5) in the Beijing–Tianjin–Hebei Region, China, from 2013 to 2018
por: Wang, Lili, et al.
Publicado: (2019) -
PM(2.5) in Beijing – temporal pattern and its association with influenza
por: Liang, Yijia, et al.
Publicado: (2014) -
Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China
por: Li, Lan, et al.
Publicado: (2016)