Cargando…

COVID-19 Impact on Musculoskeletal Regenerative Medicine Research: Maintaining Lab Continuity

Background: Research in the fields of musculoskeletal tissue engineering and regenerative medicine may suffer a slowdown during the ongoing COVID-19 pandemic emergency. This is likely to harm the development of new therapeutic strategies and their translation into the clinic in the long term. Recent...

Descripción completa

Detalles Bibliográficos
Autores principales: Roseti, Livia, Grigolo, Brunella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201300/
https://www.ncbi.nlm.nih.gov/pubmed/34198945
http://dx.doi.org/10.3390/ijerph18116110
Descripción
Sumario:Background: Research in the fields of musculoskeletal tissue engineering and regenerative medicine may suffer a slowdown during the ongoing COVID-19 pandemic emergency. This is likely to harm the development of new therapeutic strategies and their translation into the clinic in the long term. Recently, the need to maintain continuity in research activities in those fields has assumed even greater importance due to the accumulation of data concerning the effects of SARS-CoV-2 on the musculoskeletal system. This study is aimed at the identification of a series of safe handling practices against COVID-19 diffusion to apply in a research environment, thus allowing the maintenance of research lab activities. Methods: The control measures to apply to mitigate the COVID-19 risk were identified and categorized utilizing the Hierarchy of Controls. We also compared our analysis with that assessed before the pandemic to consider the additional risk of COVID-19. Results: Results highlighted that the most relevant implemented measures to control SARS-CoV-2 were based on protecting people through engineering (e.g., ventilation and social distancing), and administrative (e.g., hand sanitization, work shifts) measures or Personnel Protective Equipment, rather than eliminating hazards at the source (e.g., smart working). Conclusions: Work continuity in research labs during the COVID-19 emergency should be guaranteed by ensuring the protection of researchers in the workplace and considering the physical environment, the type of operators and work activity, and the proven ability of workers to face biological risks. The increased knowledge and awareness on lab’ risks should be useful to prevent and mitigate future viral outbreaks.