Cargando…
Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China
Background: This study intends to identify the best model for predicting the incidence of hand, foot and mouth disease (HFMD) in Ningbo by comparing Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory Neural Network (LSTM) models combined and uncombined with exogenous meteoro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201362/ https://www.ncbi.nlm.nih.gov/pubmed/34200378 http://dx.doi.org/10.3390/ijerph18116174 |