Cargando…
In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment
An early estimation of the exact number of fruits, flowers, and trees helps farmers to make better decisions on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on manual counting of fruits or flowers by workers is a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201373/ https://www.ncbi.nlm.nih.gov/pubmed/34198844 http://dx.doi.org/10.3390/s21113908 |
_version_ | 1783707803795324928 |
---|---|
author | Ghiani, Luca Sassu, Alberto Palumbo, Francesca Mercenaro, Luca Gambella, Filippo |
author_facet | Ghiani, Luca Sassu, Alberto Palumbo, Francesca Mercenaro, Luca Gambella, Filippo |
author_sort | Ghiani, Luca |
collection | PubMed |
description | An early estimation of the exact number of fruits, flowers, and trees helps farmers to make better decisions on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on manual counting of fruits or flowers by workers is a time consuming and expensive process and it is not feasible for large fields. Automatic yield estimation based on robotic agriculture provides a viable solution in this regard. In a typical image classification process, the task is not only to specify the presence or absence of a given object on a specific location, while counting how many objects are present in the scene. The success of these tasks largely depends on the availability of a large amount of training samples. This paper presents a detector of bunches of one fruit, grape, based on a deep convolutional neural network trained to detect vine bunches directly on the field. Experimental results show a 91% mean Average Precision. |
format | Online Article Text |
id | pubmed-8201373 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82013732021-06-15 In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment Ghiani, Luca Sassu, Alberto Palumbo, Francesca Mercenaro, Luca Gambella, Filippo Sensors (Basel) Article An early estimation of the exact number of fruits, flowers, and trees helps farmers to make better decisions on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on manual counting of fruits or flowers by workers is a time consuming and expensive process and it is not feasible for large fields. Automatic yield estimation based on robotic agriculture provides a viable solution in this regard. In a typical image classification process, the task is not only to specify the presence or absence of a given object on a specific location, while counting how many objects are present in the scene. The success of these tasks largely depends on the availability of a large amount of training samples. This paper presents a detector of bunches of one fruit, grape, based on a deep convolutional neural network trained to detect vine bunches directly on the field. Experimental results show a 91% mean Average Precision. MDPI 2021-06-05 /pmc/articles/PMC8201373/ /pubmed/34198844 http://dx.doi.org/10.3390/s21113908 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ghiani, Luca Sassu, Alberto Palumbo, Francesca Mercenaro, Luca Gambella, Filippo In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment |
title | In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment |
title_full | In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment |
title_fullStr | In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment |
title_full_unstemmed | In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment |
title_short | In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment |
title_sort | in-field automatic detection of grape bunches under a totally uncontrolled environment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201373/ https://www.ncbi.nlm.nih.gov/pubmed/34198844 http://dx.doi.org/10.3390/s21113908 |
work_keys_str_mv | AT ghianiluca infieldautomaticdetectionofgrapebunchesunderatotallyuncontrolledenvironment AT sassualberto infieldautomaticdetectionofgrapebunchesunderatotallyuncontrolledenvironment AT palumbofrancesca infieldautomaticdetectionofgrapebunchesunderatotallyuncontrolledenvironment AT mercenaroluca infieldautomaticdetectionofgrapebunchesunderatotallyuncontrolledenvironment AT gambellafilippo infieldautomaticdetectionofgrapebunchesunderatotallyuncontrolledenvironment |