Cargando…
MV CBCT-Based Synthetic CT Generation Using a Deep Learning Method for Rectal Cancer Adaptive Radiotherapy
Due to image quality limitations, online Megavoltage cone beam CT (MV CBCT), which represents real online patient anatomy, cannot be used to perform adaptive radiotherapy (ART). In this study, we used a deep learning method, the cycle-consistent adversarial network (CycleGAN), to improve the MV CBCT...
Autores principales: | Zhao, Jun, Chen, Zhi, Wang, Jiazhou, Xia, Fan, Peng, Jiayuan, Hu, Yiwen, Hu, Weigang, Zhang, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201514/ https://www.ncbi.nlm.nih.gov/pubmed/34136391 http://dx.doi.org/10.3389/fonc.2021.655325 |
Ejemplares similares
-
Rapid unpaired CBCT‐based synthetic CT for CBCT‐guided adaptive radiotherapy
por: Wynne, Jacob F., et al.
Publicado: (2023) -
Assessment of CBCT–based synthetic CT generation accuracy for adaptive radiotherapy planning
por: O'Hara, Christopher J., et al.
Publicado: (2022) -
Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments
por: Held, Mareike, et al.
Publicado: (2016) -
An Artificial Intelligence-Based Full-Process Solution for Radiotherapy: A Proof of Concept Study on Rectal Cancer
por: Xia, Xiang, et al.
Publicado: (2021) -
Synthetic CT generation for MRI-guided adaptive radiotherapy in prostate cancer
por: Hsu, Shu-Hui, et al.
Publicado: (2022)