Cargando…

Next-generation sequencing of miRNAs and lncRNAs from rat femur and tibia under mechanical stress

Exercise intervention has become one of the most effective methods to prevent and treat osteoporosis, which is a common age-related disease and seriously affects the health and quality of life of the elderly. However, the molecular mechanism remains to be elucidated. The present study demonstrated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Yiyan, Zhu, Guozheng, Zeng, Canjun, Yuan, Song, Qian, Yuepeng, Ye, Zelin, Zhao, Shanwen, Li, Runguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201655/
https://www.ncbi.nlm.nih.gov/pubmed/34109424
http://dx.doi.org/10.3892/mmr.2021.12200
Descripción
Sumario:Exercise intervention has become one of the most effective methods to prevent and treat osteoporosis, which is a common age-related disease and seriously affects the health and quality of life of the elderly. However, the molecular mechanism remains to be elucidated. The present study demonstrated the exercise-induced promotion of osteogenic differentiation and inhibition of adipogenic differentiation in femur and tibia by establishing an animal exercise model using a treadmill exercise system. MicroRNA (miRNA/miR) and long non-coding (lnc)RNA sequencing analyses identified 16 upregulated and two downregulated miRNAs in the exercise group, as well as 44 upregulated lncRNAs and 39 downregulated lncRNAs in the exercise group. There was increased expression of miR-9942 and miR-7704 in both the femur and tibia and an upregulation of miR-30d, miR-5100 and miR-1260 in the femur of animals from the exercise group. In addition, four of the five most downregulated lncRNAs, including lncRNA MSTRG.2625, lncRNA MSTRG.1557, lncRNA MSTRG.691 and lncRNA MSTRG.7497, were demonstrated to be suppressed in both the femur and tibia after treadmill exercise. The results of the present study provided a valuable resource for further exploring the molecular mechanisms underlying the regulation of osteoporosis by exercise.