Cargando…
Using deep learning to identify recent positive selection in malaria parasite sequence data
BACKGROUND: Malaria, caused by Plasmodium parasites, is a major global public health problem. To assist an understanding of malaria pathogenesis, including drug resistance, there is a need for the timely detection of underlying genetic mutations and their spread. With the increasing use of whole-gen...
Autores principales: | Deelder, Wouter, Benavente, Ernest Diez, Phelan, Jody, Manko, Emilia, Campino, Susana, Palla, Luigi, Clark, Taane G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201710/ https://www.ncbi.nlm.nih.gov/pubmed/34126997 http://dx.doi.org/10.1186/s12936-021-03788-x |
Ejemplares similares
-
Geographical classification of malaria parasites through applying machine learning to whole genome sequence data
por: Deelder, Wouter, et al.
Publicado: (2022) -
Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
por: Deelder, Wouter, et al.
Publicado: (2019) -
A modified decision tree approach to improve the prediction and mutation discovery for drug resistance in Mycobacterium tuberculosis
por: Deelder, Wouter, et al.
Publicado: (2022) -
COVID-profiler: a webserver for the analysis of SARS-CoV-2 sequencing data
por: Phelan, Jody, et al.
Publicado: (2022) -
TB-ML—a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis
por: Libiseller-Egger, Julian, et al.
Publicado: (2023)