Cargando…
Interpretable Neuron Structuring with Graph Spectral Regularization
While neural networks are powerful approximators used to classify or embed data into lower dimensional spaces, they are often regarded as black boxes with uninterpretable features. Here we propose Graph Spectral Regularization for making hidden layers more interpretable without significantly impacti...
Autores principales: | Tong, Alexander, van Dijk, David, Stanley, Jay S., Amodio, Matthew, Yim, Kristina, Muhle, Rebecca, Noonan, James, Wolf, Guy, Krishnaswamy, Smita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201816/ https://www.ncbi.nlm.nih.gov/pubmed/34131660 http://dx.doi.org/10.1007/978-3-030-44584-3_40 |
Ejemplares similares
-
Spectral analysis of transient amplifiers for death–birth updating constructed from regular graphs
por: Richter, Hendrik
Publicado: (2021) -
Distance-regular graphs
por: Brouwer, Andries E, et al.
Publicado: (1989) -
Spectral radius of graphs
por: Stevanovic, Dragan
Publicado: (2015) -
Vertex-deleted subgraphs and regular factors from regular graph()
por: Lu, Hongliang, et al.
Publicado: (2011) -
Completeness and regularity of generalized fuzzy graphs
por: Samanta, Sovan, et al.
Publicado: (2016)