Cargando…

Identification of high risk clinical and imaging features for intracranial artery dissection using high-resolution cardiovascular magnetic resonance

BACKGROUND: Intracranial artery dissection (IAD) often causes headache and cerebral vascular ischemic events. The imaging characteristics of IAD remain unclear. This study aims to characterize the appearance of culprit and non-culprit IAD using high-resolution cardiovascular magnetic resonance imagi...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Zhang, Tian, Xia, Tian, Bing, Meddings, Zakaria, Zhang, Xuefeng, Li, Jing, Saloner, David, Liu, Qi, Teng, Zhongzhao, Lu, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201847/
https://www.ncbi.nlm.nih.gov/pubmed/34120627
http://dx.doi.org/10.1186/s12968-021-00766-9
Descripción
Sumario:BACKGROUND: Intracranial artery dissection (IAD) often causes headache and cerebral vascular ischemic events. The imaging characteristics of IAD remain unclear. This study aims to characterize the appearance of culprit and non-culprit IAD using high-resolution cardiovascular magnetic resonance imaging (hrCMR) and quantify the incremental value of hrCMR in identifying higher risk lesions. METHODS: Imaging data from patients who underwent intervention examination or treatment using digital subtraction angiography (DSA) and hrCMR using a 3 T CMR system within 30 days after the onset of neurological symptoms were collected. The CMR protocol included diffusion-weighted imaging (DWI), black blood T1-, T2- and contrast-enhanced T1-weighted sequences. Lesions were classified as culprit and non-culprit according to imaging findings and patient clinical presentations. Univariate and multivariate analyses were performed to assess the difference between culprit and non-culprit lesions and complementary value of hrCMR in identifying higher risk lesions. RESULTS: In total, 75 patients were included in this study. According to the morphology, lesions could be classified into five types: Type I, classical dissection (n = 50); Type II, fusiform aneurysm (n = 1); Type III, long dissected aneurysm (n = 3); Type IV, dolichoectatic dissecting aneurysm (n = 9) and Type V, saccular aneurysm (n = 12). Regression analyses showed that age and hypertension were both associated with culprit lesions (age: OR, 0.83; 95% CI 0.75–0.92; p < 0.001 and hypertension: OR, 66.62; 95% CI 5.91–751.11; p = 0.001). Hematoma identified by hrCMR was significantly associated with culprit lesions (OR, 16.80; 95% CI 1.01–280.81; p = 0.037). Moreover, 17 cases (16 lesions were judged to be culprit) were diagnosed as IAD but not visible in DSA and 15 were Type I lesion. CONCLUSION: hrCMR is helpful in visualizing and characterizing IAD. It provides a significant complementary value over DSA for the diagnosis of IAD. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12968-021-00766-9.