Cargando…
ASAXS measurements on ferritin and apoferritin at the bioSAXS beamline P12 (PETRA III, DESY)
Small-angle X-ray scattering is widely utilized to study biological macromolecules in solution. For samples containing specific (e.g. metal) atoms, additional information can be obtained using anomalous scattering. Here, measuring samples at different energies close to the absorption edges of relev...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202030/ https://www.ncbi.nlm.nih.gov/pubmed/34188614 http://dx.doi.org/10.1107/S1600576721003034 |
Sumario: | Small-angle X-ray scattering is widely utilized to study biological macromolecules in solution. For samples containing specific (e.g. metal) atoms, additional information can be obtained using anomalous scattering. Here, measuring samples at different energies close to the absorption edges of relevant elements provides specific structural details. However, anomalous small-angle X-ray scattering (ASAXS) applications to dilute macromolecular solutions are challenging owing to the overall low anomalous scattering effect. Here, pilot ASAXS experiments from dilute solutions of ferritin and cobalt-loaded apoferritin are reported. These samples were investigated near the resonance X-ray K edges of Fe and Co, respectively, at the EMBL P12 bioSAXS beamline at PETRA III, DESY. Thanks to the high brilliance of the P12 beamline, ASAXS experiments are feasible on dilute protein solutions, allowing one to extract the Fe- or Co-specific anomalous dispersion terms from the ASAXS data. The data were subsequently used to determine the spatial distribution of either iron or cobalt atoms incorporated into the ferritin/apoferritin protein cages. |
---|