Cargando…
InferBERT: A Transformer-Based Causal Inference Framework for Enhancing Pharmacovigilance
Background: T ransformer-based language models have delivered clear improvements in a wide range of natural language processing (NLP) tasks. However, those models have a significant limitation; specifically, they cannot infer causality, a prerequisite for deployment in pharmacovigilance, and health...
Autores principales: | Wang, Xingqiao, Xu, Xiaowei, Tong, Weida, Roberts, Ruth, Liu, Zhichao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202286/ https://www.ncbi.nlm.nih.gov/pubmed/34136800 http://dx.doi.org/10.3389/frai.2021.659622 |
Ejemplares similares
-
DeepCausality: A general AI-powered causal inference framework for free text: A case study of LiverTox
por: Wang, Xingqiao, et al.
Publicado: (2022) -
BERT-Based Natural Language Processing of Drug Labeling Documents: A Case Study for Classifying Drug-Induced Liver Injury Risk
por: Wu, Yue, et al.
Publicado: (2021) -
A Bayesian Account of Generalist and Specialist Formation Under the Active Inference Framework
por: Chen, Anthony G., et al.
Publicado: (2020) -
DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation
por: Li, Ting, et al.
Publicado: (2021) -
Corrigendum: DeepCarc: Deep learning-powered carcinogenicity prediction using model-level representation
por: Li, Ting, et al.
Publicado: (2022)