Cargando…
Frozen algorithms: how the brain's wiring facilitates learning
Synapses and neural connectivity are plastic and shaped by experience. But to what extent does connectivity itself influence the ability of a neural circuit to learn? Insights from optimization theory and AI shed light on how learning can be implemented in neural circuits. Though abstract in their n...
Autores principales: | Raman, Dhruva V, O’Leary, Timothy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Current Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202511/ https://www.ncbi.nlm.nih.gov/pubmed/33508698 http://dx.doi.org/10.1016/j.conb.2020.12.017 |
Ejemplares similares
-
Fundamental bounds on learning performance in neural circuits
por: Raman, Dhruva Venkita, et al.
Publicado: (2019) -
Optimal plasticity for memory maintenance during ongoing synaptic change
por: Raman, Dhruva V, et al.
Publicado: (2021) -
Stable task information from an unstable neural population
por: Rule, Michael E, et al.
Publicado: (2020) -
How do you wire a brain?
por: Budd, Julian, et al.
Publicado: (2013) -
Self-healing codes: How stable neural populations can track continually reconfiguring neural representations
por: Rule, Michael E., et al.
Publicado: (2022)