Cargando…
Prediction of premature all-cause mortality in patients receiving peritoneal dialysis using modified artificial neural networks
Premature all-cause mortality is high in patients receiving peritoneal dialysis (PD). The accurate and early prediction of mortality is critical and difficult. Three prediction models, the logistic regression (LR) model, artificial neural network (ANN) classic model and a new structured ANN model (A...
Autores principales: | Zhou, Qiongxiu, You, Xiaohan, Dong, Haiyan, Lin, Zhe, Shi, Yanling, Su, Zhen, Shao, Rongrong, Chen, Chaosheng, Zhang, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202888/ https://www.ncbi.nlm.nih.gov/pubmed/33988129 http://dx.doi.org/10.18632/aging.203033 |
Ejemplares similares
-
Effects of parathyroid hormone and vitamin D supplementation on stroke among patients receiving peritoneal dialysis
por: You, Xiaohan, et al.
Publicado: (2020) -
A microrna screen to identify regulators of peritoneal fibrosis in a rat model of peritoneal dialysis
por: Lin, Fan, et al.
Publicado: (2015) -
A Case of Peritoneal Dialysis-related Peritonitis Caused by Aeromonas Hydrophila in the Patient Receiving Automated Peritoneal Dialysis
por: Kim, Hyun Jin, et al.
Publicado: (2018) -
Factors Influencing the Choice of Automated Peritoneal Dialysis Treatment by Patients Receiving Home Peritoneal Dialysis
por: Cao, Fang, et al.
Publicado: (2023) -
Artificial intelligence in peritoneal dialysis: general overview
por: Bai, Qiong, et al.
Publicado: (2022)