Cargando…

Semi-analytical modelling and evaluation of uniformly doped silicene nanotransistors for digital logic gates

Silicene has attracted remarkable attention in the semiconductor research community due to its silicon (Si) nature. It is predicted as one of the most promising candidates for the next generation nanoelectronic devices. In this paper, an efficient non-iterative technique is employed to create the SP...

Descripción completa

Detalles Bibliográficos
Autores principales: Chuan, Mu Wen, Wong, Kien Liong, Riyadi, Munawar Agus, Hamzah, Afiq, Rusli, Shahrizal, Alias, Nurul Ezaila, Lim, Cheng Siong, Tan, Michael Loong Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8202956/
https://www.ncbi.nlm.nih.gov/pubmed/34125874
http://dx.doi.org/10.1371/journal.pone.0253289
Descripción
Sumario:Silicene has attracted remarkable attention in the semiconductor research community due to its silicon (Si) nature. It is predicted as one of the most promising candidates for the next generation nanoelectronic devices. In this paper, an efficient non-iterative technique is employed to create the SPICE models for p-type and n-type uniformly doped silicene field-effect transistors (FETs). The current-voltage characteristics show that the proposed silicene FET models exhibit high on-to-off current ratio under ballistic transport. In order to obtain practical digital logic timing diagrams, a parasitic load capacitance, which is dependent on the interconnect length, is attached at the output terminal of the logic circuits. Furthermore, the key circuit performance metrics, including the propagation delay, average power, power-delay product and energy-delay product of the proposed silicene-based logic gates are extracted and benchmarked with published results. The effects of the interconnect length to the propagation delay and average power are also investigated. The results of this work further envisage the uniformly doped silicene as a promising candidate for future nanoelectronic applications.