Cargando…

A computational framework for finding parameter sets associated with chaotic dynamics

Many biological ecosystems exhibit chaotic behavior, demonstrated either analytically using parameter choices in an associated dynamical systems model or empirically through analysis of experimental data. In this paper, we use existing software tools (COPASI, R) to explore dynamical systems and unco...

Descripción completa

Detalles Bibliográficos
Autores principales: Koshy-Chenthittayil, S., Dimitrova, E., Jenkins, E.W., Dean, B.C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203228/
https://www.ncbi.nlm.nih.gov/pubmed/33896838
http://dx.doi.org/10.3233/ISB-200476
_version_ 1783708126705352704
author Koshy-Chenthittayil, S.
Dimitrova, E.
Jenkins, E.W.
Dean, B.C.
author_facet Koshy-Chenthittayil, S.
Dimitrova, E.
Jenkins, E.W.
Dean, B.C.
author_sort Koshy-Chenthittayil, S.
collection PubMed
description Many biological ecosystems exhibit chaotic behavior, demonstrated either analytically using parameter choices in an associated dynamical systems model or empirically through analysis of experimental data. In this paper, we use existing software tools (COPASI, R) to explore dynamical systems and uncover regions with positive Lyapunov exponents where thus chaos exists. We evaluate the ability of the software’s optimization algorithms to find these positive values with several dynamical systems used to model biological populations. The algorithms have been able to identify parameter sets which lead to positive Lyapunov exponents, even when those exponents lie in regions with small support. For one of the examined systems, we observed that positive Lyapunov exponents were not uncovered when executing a search over the parameter space with small spacings between values of the independent variables.
format Online
Article
Text
id pubmed-8203228
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher IOS Press
record_format MEDLINE/PubMed
spelling pubmed-82032282021-06-28 A computational framework for finding parameter sets associated with chaotic dynamics Koshy-Chenthittayil, S. Dimitrova, E. Jenkins, E.W. Dean, B.C. In Silico Biol Research Article Many biological ecosystems exhibit chaotic behavior, demonstrated either analytically using parameter choices in an associated dynamical systems model or empirically through analysis of experimental data. In this paper, we use existing software tools (COPASI, R) to explore dynamical systems and uncover regions with positive Lyapunov exponents where thus chaos exists. We evaluate the ability of the software’s optimization algorithms to find these positive values with several dynamical systems used to model biological populations. The algorithms have been able to identify parameter sets which lead to positive Lyapunov exponents, even when those exponents lie in regions with small support. For one of the examined systems, we observed that positive Lyapunov exponents were not uncovered when executing a search over the parameter space with small spacings between values of the independent variables. IOS Press 2021-05-28 /pmc/articles/PMC8203228/ /pubmed/33896838 http://dx.doi.org/10.3233/ISB-200476 Text en © 2020 – The authors. Published by IOS Press https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Koshy-Chenthittayil, S.
Dimitrova, E.
Jenkins, E.W.
Dean, B.C.
A computational framework for finding parameter sets associated with chaotic dynamics
title A computational framework for finding parameter sets associated with chaotic dynamics
title_full A computational framework for finding parameter sets associated with chaotic dynamics
title_fullStr A computational framework for finding parameter sets associated with chaotic dynamics
title_full_unstemmed A computational framework for finding parameter sets associated with chaotic dynamics
title_short A computational framework for finding parameter sets associated with chaotic dynamics
title_sort computational framework for finding parameter sets associated with chaotic dynamics
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203228/
https://www.ncbi.nlm.nih.gov/pubmed/33896838
http://dx.doi.org/10.3233/ISB-200476
work_keys_str_mv AT koshychenthittayils acomputationalframeworkforfindingparametersetsassociatedwithchaoticdynamics
AT dimitrovae acomputationalframeworkforfindingparametersetsassociatedwithchaoticdynamics
AT jenkinsew acomputationalframeworkforfindingparametersetsassociatedwithchaoticdynamics
AT deanbc acomputationalframeworkforfindingparametersetsassociatedwithchaoticdynamics
AT koshychenthittayils computationalframeworkforfindingparametersetsassociatedwithchaoticdynamics
AT dimitrovae computationalframeworkforfindingparametersetsassociatedwithchaoticdynamics
AT jenkinsew computationalframeworkforfindingparametersetsassociatedwithchaoticdynamics
AT deanbc computationalframeworkforfindingparametersetsassociatedwithchaoticdynamics