Cargando…
Machine Intelligence in Single-Cell Data Analysis: Advances and New Challenges
The rapid development of single-cell technologies allows for dissecting cellular heterogeneity at different omics layers with an unprecedented resolution. In-dep analysis of cellular heterogeneity will boost our understanding of complex biological systems or processes, including cancer, immune syste...
Autores principales: | Liu, Jiajia, Fan, Zhiwei, Zhao, Weiling, Zhou, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203333/ https://www.ncbi.nlm.nih.gov/pubmed/34135939 http://dx.doi.org/10.3389/fgene.2021.655536 |
Ejemplares similares
-
Genome-Wide Association and Mechanistic Studies Indicate That Immune Response Contributes to Alzheimer’s Disease Development
por: Liu, Changan, et al.
Publicado: (2018) -
CCPE: cell cycle pseudotime estimation for single cell RNA-seq data
por: Liu, Jiajia, et al.
Publicado: (2021) -
Phenotype-Genotype analysis of caucasian patients with high risk of osteoarthritis
por: Wang, Yanfei, et al.
Publicado: (2022) -
Identification of new co-diagnostic genes for sepsis and metabolic syndrome using single-cell data analysis and machine learning algorithms
por: Tao, Linfeng, et al.
Publicado: (2023) -
Editorial: Machine Learning and Mathematical Models for Single-Cell Data Analysis
por: Ou-Yang, Le, et al.
Publicado: (2022)