Cargando…

Mass drug administration with azithromycin for trachoma elimination and the population structure of Streptococcus pneumoniae in the nasopharynx

OBJECTIVE: Mass drug administration (MDA) with azithromycin for trachoma elimination reduces nasopharyngeal carriage of Streptococcus pneumoniae in the short term. We evaluated S. pneumoniae carried in the nasopharynx before and after a round of azithromycin MDA to determine whether MDA was associat...

Descripción completa

Detalles Bibliográficos
Autores principales: Gladstone, Rebecca A., Bojang, Ebrima, Hart, John, Harding-Esch, Emma M., Mabey, David, Sillah, Ansumana, Bailey, Robin L., Burr, Sarah E., Roca, Anna, Bentley, Stephen D., Holland, Martin J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203556/
https://www.ncbi.nlm.nih.gov/pubmed/32750538
http://dx.doi.org/10.1016/j.cmi.2020.07.039
Descripción
Sumario:OBJECTIVE: Mass drug administration (MDA) with azithromycin for trachoma elimination reduces nasopharyngeal carriage of Streptococcus pneumoniae in the short term. We evaluated S. pneumoniae carried in the nasopharynx before and after a round of azithromycin MDA to determine whether MDA was associated with changes in pneumococcal population structure and resistance. METHODS: We analysed 514 pneumococcal whole genomes randomly selected from nasopharyngeal samples collected in two Gambian villages that received three annual rounds of MDA for trachoma elimination. The 514 samples represented 293 participants, of which 75% were children aged 0–9 years, isolated during three cross-sectional surveys (CSSs) conducted before the third round of MDA (CSS-1) and at 1 (CSS-2) and 6 (CSS-3) months after MDA. Bayesian Analysis of Population Structure (BAPS) was used to cluster related isolates by capturing variation in the core genome. Serotype and multilocus sequence type were inferred from the genotype. Antimicrobial resistance determinants were identified from assemblies, including known macrolide resistance genes. RESULTS: Twenty-seven BAPS clusters were assigned. These consisted of 81 sequence types (STs). Two BAPS clusters not observed in CSS-1 (n = 109) or CSS-2 (n = 69), increased in frequency in CSS-3 (n = 126); BAPS20 (8.73%, p 0.016) and BAPS22 (7.14%, p 0.032) but were not associated with antimicrobial resistance. Macrolide resistance within BAPS17 increased after treatment (CSS-1 n = 0/6, CSS-2/3 n = 5/5, p 0.002) and was carried on a mobile transposable element that also conferred resistance to tetracycline. DISCUSSION: Limited changes in pneumococcal population structure were observed after the third round of MDA, suggesting treatment had little effect on the circulating lineages. An increase in macrolide resistance within one BAPS highlights the need for antimicrobial resistance surveillance in treated villages.