Cargando…

Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease

This work validates the generalizability of MRI-based classification of Alzheimer’s disease (AD) patients and controls (CN) to an external data set and to the task of prediction of conversion to AD in individuals with mild cognitive impairment (MCI). We used a conventional support vector machine (SV...

Descripción completa

Detalles Bibliográficos
Autores principales: Bron, Esther E., Klein, Stefan, Papma, Janne M., Jiskoot, Lize C., Venkatraghavan, Vikram, Linders, Jara, Aalten, Pauline, De Deyn, Peter Paul, Biessels, Geert Jan, Claassen, Jurgen A.H.R., Middelkoop, Huub A.M., Smits, Marion, Niessen, Wiro J., van Swieten, John C., van der Flier, Wiesje M., Ramakers, Inez H.G.B., van der Lugt, Aad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203808/
https://www.ncbi.nlm.nih.gov/pubmed/34118592
http://dx.doi.org/10.1016/j.nicl.2021.102712
_version_ 1783708247110189056
author Bron, Esther E.
Klein, Stefan
Papma, Janne M.
Jiskoot, Lize C.
Venkatraghavan, Vikram
Linders, Jara
Aalten, Pauline
De Deyn, Peter Paul
Biessels, Geert Jan
Claassen, Jurgen A.H.R.
Middelkoop, Huub A.M.
Smits, Marion
Niessen, Wiro J.
van Swieten, John C.
van der Flier, Wiesje M.
Ramakers, Inez H.G.B.
van der Lugt, Aad
author_facet Bron, Esther E.
Klein, Stefan
Papma, Janne M.
Jiskoot, Lize C.
Venkatraghavan, Vikram
Linders, Jara
Aalten, Pauline
De Deyn, Peter Paul
Biessels, Geert Jan
Claassen, Jurgen A.H.R.
Middelkoop, Huub A.M.
Smits, Marion
Niessen, Wiro J.
van Swieten, John C.
van der Flier, Wiesje M.
Ramakers, Inez H.G.B.
van der Lugt, Aad
author_sort Bron, Esther E.
collection PubMed
description This work validates the generalizability of MRI-based classification of Alzheimer’s disease (AD) patients and controls (CN) to an external data set and to the task of prediction of conversion to AD in individuals with mild cognitive impairment (MCI). We used a conventional support vector machine (SVM) and a deep convolutional neural network (CNN) approach based on structural MRI scans that underwent either minimal pre-processing or more extensive pre-processing into modulated gray matter (GM) maps. Classifiers were optimized and evaluated using cross-validation in the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 334 AD, 520 CN). Trained classifiers were subsequently applied to predict conversion to AD in ADNI MCI patients (231 converters, 628 non-converters) and in the independent Health-RI Parelsnoer Neurodegenerative Diseases Biobank data set. From this multi-center study representing a tertiary memory clinic population, we included 199 AD patients, 139 participants with subjective cognitive decline, 48 MCI patients converting to dementia, and 91 MCI patients who did not convert to dementia. AD-CN classification based on modulated GM maps resulted in a similar area-under-the-curve (AUC) for SVM (0.940; 95%CI: 0.924–0.955) and CNN (0.933; 95%CI: 0.918–0.948). Application to conversion prediction in MCI yielded significantly higher performance for SVM (AUC = 0.756; [Formula: see text] CI: [Formula: see text]) than for CNN (AUC = 0.742; [Formula: see text] CI: [Formula: see text]) ([Formula: see text] for McNemar’s test). In external validation, performance was slightly decreased. For AD-CN, it again gave similar AUCs for SVM (0.896; 95%CI: 0.855–0.932) and CNN (0.876; 95%CI: 0.836–0.913). For prediction in MCI, performances decreased for both SVM (AUC = 0.665; [Formula: see text]: [Formula: see text]) and CNN (AUC = 0.702; [Formula: see text] CI: [Formula: see text]). Both with SVM and CNN, classification based on modulated GM maps significantly outperformed classification based on minimally processed images ([Formula: see text]. Deep and conventional classifiers performed equally well for AD classification and their performance decreased only slightly when applied to the external cohort. We expect that this work on external validation contributes towards translation of machine learning to clinical practice.
format Online
Article
Text
id pubmed-8203808
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-82038082021-06-21 Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease Bron, Esther E. Klein, Stefan Papma, Janne M. Jiskoot, Lize C. Venkatraghavan, Vikram Linders, Jara Aalten, Pauline De Deyn, Peter Paul Biessels, Geert Jan Claassen, Jurgen A.H.R. Middelkoop, Huub A.M. Smits, Marion Niessen, Wiro J. van Swieten, John C. van der Flier, Wiesje M. Ramakers, Inez H.G.B. van der Lugt, Aad Neuroimage Clin Regular Article This work validates the generalizability of MRI-based classification of Alzheimer’s disease (AD) patients and controls (CN) to an external data set and to the task of prediction of conversion to AD in individuals with mild cognitive impairment (MCI). We used a conventional support vector machine (SVM) and a deep convolutional neural network (CNN) approach based on structural MRI scans that underwent either minimal pre-processing or more extensive pre-processing into modulated gray matter (GM) maps. Classifiers were optimized and evaluated using cross-validation in the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 334 AD, 520 CN). Trained classifiers were subsequently applied to predict conversion to AD in ADNI MCI patients (231 converters, 628 non-converters) and in the independent Health-RI Parelsnoer Neurodegenerative Diseases Biobank data set. From this multi-center study representing a tertiary memory clinic population, we included 199 AD patients, 139 participants with subjective cognitive decline, 48 MCI patients converting to dementia, and 91 MCI patients who did not convert to dementia. AD-CN classification based on modulated GM maps resulted in a similar area-under-the-curve (AUC) for SVM (0.940; 95%CI: 0.924–0.955) and CNN (0.933; 95%CI: 0.918–0.948). Application to conversion prediction in MCI yielded significantly higher performance for SVM (AUC = 0.756; [Formula: see text] CI: [Formula: see text]) than for CNN (AUC = 0.742; [Formula: see text] CI: [Formula: see text]) ([Formula: see text] for McNemar’s test). In external validation, performance was slightly decreased. For AD-CN, it again gave similar AUCs for SVM (0.896; 95%CI: 0.855–0.932) and CNN (0.876; 95%CI: 0.836–0.913). For prediction in MCI, performances decreased for both SVM (AUC = 0.665; [Formula: see text]: [Formula: see text]) and CNN (AUC = 0.702; [Formula: see text] CI: [Formula: see text]). Both with SVM and CNN, classification based on modulated GM maps significantly outperformed classification based on minimally processed images ([Formula: see text]. Deep and conventional classifiers performed equally well for AD classification and their performance decreased only slightly when applied to the external cohort. We expect that this work on external validation contributes towards translation of machine learning to clinical practice. Elsevier 2021-06-04 /pmc/articles/PMC8203808/ /pubmed/34118592 http://dx.doi.org/10.1016/j.nicl.2021.102712 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Regular Article
Bron, Esther E.
Klein, Stefan
Papma, Janne M.
Jiskoot, Lize C.
Venkatraghavan, Vikram
Linders, Jara
Aalten, Pauline
De Deyn, Peter Paul
Biessels, Geert Jan
Claassen, Jurgen A.H.R.
Middelkoop, Huub A.M.
Smits, Marion
Niessen, Wiro J.
van Swieten, John C.
van der Flier, Wiesje M.
Ramakers, Inez H.G.B.
van der Lugt, Aad
Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
title Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
title_full Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
title_fullStr Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
title_full_unstemmed Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
title_short Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer’s disease
title_sort cross-cohort generalizability of deep and conventional machine learning for mri-based diagnosis and prediction of alzheimer’s disease
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203808/
https://www.ncbi.nlm.nih.gov/pubmed/34118592
http://dx.doi.org/10.1016/j.nicl.2021.102712
work_keys_str_mv AT bronesthere crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT kleinstefan crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT papmajannem crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT jiskootlizec crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT venkatraghavanvikram crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT lindersjara crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT aaltenpauline crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT dedeynpeterpaul crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT biesselsgeertjan crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT claassenjurgenahr crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT middelkoophuubam crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT smitsmarion crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT niessenwiroj crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT vanswietenjohnc crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT vanderflierwiesjem crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT ramakersinezhgb crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT vanderlugtaad crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease
AT crosscohortgeneralizabilityofdeepandconventionalmachinelearningformribaseddiagnosisandpredictionofalzheimersdisease