Cargando…
Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques
PURPOSE: To investigate the diagnostic ability of radiomics-based machine learning in differentiating atypical low-grade astrocytoma (LGA) from anaplastic astrocytoma (AA). METHODS: The current study involved 175 patients diagnosed with LGA (n = 95) or AA (n = 80) and treated in the Neurosurgery Dep...
Autores principales: | Chen, Boran, Chen, Chaoyue, Wang, Jian, Teng, Yuen, Ma, Xuelei, Xu, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204041/ https://www.ncbi.nlm.nih.gov/pubmed/34141605 http://dx.doi.org/10.3389/fonc.2021.521313 |
Ejemplares similares
-
Glioblastoma and Anaplastic Astrocytoma: Differentiation Using MRI Texture Analysis
por: Tian, Zerong, et al.
Publicado: (2019) -
Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
por: Zhang, Yang, et al.
Publicado: (2019) -
The feasibility of MRI texture analysis in distinguishing glioblastoma, anaplastic astrocytoma and anaplastic oligodendroglioma
por: Teng, Yuen, et al.
Publicado: (2022) -
Radiomics-Based Machine Learning Technology Enables Better Differentiation Between Glioblastoma and Anaplastic Oligodendroglioma
por: Fan, Yimeng, et al.
Publicado: (2019) -
The Mystery of Multiple Masses: A Case of Anaplastic Astrocytoma
por: Sethi, Pooja, et al.
Publicado: (2017)