Cargando…
A numerical and analytical study of SE(Is)(Ih)AR epidemic fractional order COVID-19 model
This article describes the corona virus spread in a population under certain assumptions with the help of a fractional order mathematical model. The fractional order derivative is the well-known fractal fractional operator. We have given the existence results and numerical simulations with the help...
Autores principales: | Khan, Hasib, Begum, Razia, Abdeljawad, Thabet, Khashan, M. Motawi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204077/ https://www.ncbi.nlm.nih.gov/pubmed/34149836 http://dx.doi.org/10.1186/s13662-021-03447-0 |
Ejemplares similares
-
A fractional order Covid-19 epidemic model with Mittag-Leffler kernel
por: Khan, Hasib, et al.
Publicado: (2021) -
On an SE(Is)(Ih)AR epidemic model with combined vaccination and antiviral controls for COVID-19 pandemic
por: De la Sen, M., et al.
Publicado: (2021) -
Numerical computations and theoretical investigations of a dynamical system with fractional order derivative
por: Arfan, Muhammad, et al.
Publicado: (2022) -
Study of fractional order dynamics of nonlinear mathematical model
por: Shah, Kamal, et al.
Publicado: (2022) -
A Fractional Order Covid-19 Epidemic Model with Mittag–Leffler Kernel
por: Khan, H., et al.
Publicado: (2023)