Cargando…
A Machine Learning Model for Predicting a Major Response to Neoadjuvant Chemotherapy in Advanced Gastric Cancer
AIMS: To develop and validate a model for predicting major pathological response to neoadjuvant chemotherapy (NAC) in advanced gastric cancer (AGC) based on a machine learning algorithm. METHOD: A total of 221 patients who underwent NAC and radical gastrectomy between February 2013 and September 202...
Autores principales: | Chen, Yonghe, Wei, Kaikai, Liu, Dan, Xiang, Jun, Wang, Gang, Meng, Xiaochun, Peng, Junsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204104/ https://www.ncbi.nlm.nih.gov/pubmed/34141620 http://dx.doi.org/10.3389/fonc.2021.675458 |
Ejemplares similares
-
Nomogram for Predicting Survival in Advanced Gastric Cancer after Neoadjuvant Chemotherapy and Radical Surgery
por: Chen, Yonghe, et al.
Publicado: (2021) -
Machine Learning-Assisted Ensemble Analysis for the Prediction of Response to Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer
por: Huang, Yibao, et al.
Publicado: (2022) -
Triplet versus doublet neoadjuvant chemotherapy regimens for locally advanced gastric cancer: a propensity score matching analysis
por: Chen, Yonghe, et al.
Publicado: (2021) -
The Sensitivity Prediction of Neoadjuvant Chemotherapy for Gastric Cancer
por: Sun, Juan, et al.
Publicado: (2021) -
Machine learning for predicting breast-conserving surgery candidates after neoadjuvant chemotherapy based on DCE-MRI
por: Chen, Zhigeng, et al.
Publicado: (2023)