Cargando…
FedDPGAN: Federated Differentially Private Generative Adversarial Networks Framework for the Detection of COVID-19 Pneumonia
Existing deep learning technologies generally learn the features of chest X-ray data generated by Generative Adversarial Networks (GAN) to diagnose COVID-19 pneumonia. However, the above methods have a critical challenge: data privacy. GAN will leak the semantic information of the training data whic...
Autores principales: | Zhang, Longling, Shen, Bochen, Barnawi, Ahmed, Xi, Shan, Kumar, Neeraj, Wu, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204125/ https://www.ncbi.nlm.nih.gov/pubmed/34149305 http://dx.doi.org/10.1007/s10796-021-10144-6 |
Ejemplares similares
-
Federated transfer learning for auxiliary classifier generative adversarial networks: framework and industrial application
por: Guo, Wei, et al.
Publicado: (2023) -
FedMed: A Federated Learning Framework for Language Modeling
por: Wu, Xing, et al.
Publicado: (2020) -
PerHeFed: A general framework of personalized federated learning for heterogeneous convolutional neural networks
por: Ma, Le, et al.
Publicado: (2022) -
The Generative Adversarial Brain
por: Gershman, Samuel J.
Publicado: (2019) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021)