Cargando…
Deep neural network ensemble for on-the-fly quality control-driven segmentation of cardiac MRI T1 mapping
Recent developments in artificial intelligence have generated increasing interest to deploy automated image analysis for diagnostic imaging and large-scale clinical applications. However, inaccuracy from automated methods could lead to incorrect conclusions, diagnoses or even harm to patients. Manua...
Autores principales: | Hann, Evan, Popescu, Iulia A., Zhang, Qiang, Gonzales, Ricardo A., Barutçu, Ahmet, Neubauer, Stefan, Ferreira, Vanessa M., Piechnik, Stefan K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204226/ https://www.ncbi.nlm.nih.gov/pubmed/33831594 http://dx.doi.org/10.1016/j.media.2021.102029 |
Ejemplares similares
-
Quality control-driven deep ensemble for accountable automated segmentation of cardiac magnetic resonance LGE and VNE images
por: Gonzales, Ricardo A., et al.
Publicado: (2023) -
Deep learning with attention supervision for automated motion artefact detection in quality control of cardiac T1-mapping
por: Zhang, Qiang, et al.
Publicado: (2020) -
Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods
por: Burrage, Matthew K., et al.
Publicado: (2021) -
Cardiovascular magnetic resonance stress and rest T1-mapping using regadenoson for detection of ischemic heart disease compared to healthy controls
por: Burrage, Matthew K., et al.
Publicado: (2021) -
State-of-the-art review: stress T1 mapping—technical considerations, pitfalls and emerging clinical applications
por: Piechnik, Stefan K., et al.
Publicado: (2017)