Cargando…
Zero-Effort Ambient Heart Rate Monitoring Using Ballistocardiography Detected Through a Seat Cushion: Prototype Development and Preliminary Study
BACKGROUND: Cardiovascular diseases are a leading cause of death worldwide and result in significant economic costs to health care systems. The prevalence of cardiovascular conditions that require monitoring is expected to increase as the average age of the global population continues to rise. Altho...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204244/ https://www.ncbi.nlm.nih.gov/pubmed/34057420 http://dx.doi.org/10.2196/25996 |
Sumario: | BACKGROUND: Cardiovascular diseases are a leading cause of death worldwide and result in significant economic costs to health care systems. The prevalence of cardiovascular conditions that require monitoring is expected to increase as the average age of the global population continues to rise. Although an accurate cardiac assessment can be performed at medical centers, frequent visits for assessment are not feasible for most people, especially those with limited mobility. Monitoring of vital signs at home is becoming an increasingly desirable, accessible, and practical alternative. As wearable devices are not the ideal solution for everyone, it is necessary to develop parallel and complementary approaches. OBJECTIVE: This research aims to develop a zero-effort, unobtrusive, cost-effective, and portable option for home-based ambient heart rate monitoring. METHODS: The prototype seat cushion uses load cells to acquire a user’s ballistocardiogram (BCG). The analog signal from the load cells is amplified and filtered by a signal-conditioning circuit before being digitally recorded. A pilot study with 20 participants was conducted to analyze the prototype’s ability to capture the BCG during five real-world tasks: sitting still, watching a video on a computer screen, reading, using a computer, and having a conversation. A novel algorithm based on the continuous wavelet transform was developed to extract the heart rate by detecting the largest amplitude values (J-peaks) in the BCG signal. RESULTS: The pilot study data showed that the BCG signals from all five tasks had sufficiently large portions to extract heart rate. The continuous wavelet transform–based algorithm for J-peak detection demonstrated an overall accuracy of 91.4% compared with electrocardiography. Excluding three outliers that had significantly noisy BCG data, the algorithm achieved 94.6% accuracy, which was aligned with that of wearable devices. CONCLUSIONS: This study suggests that BCG acquired through a seat cushion is a viable alternative to wearable technologies. The prototype seat cushion presented in this study is an example of a relatively accessible, affordable, portable, and unobtrusive zero-effort approach to achieve frequent home-based ambient heart rate monitoring. |
---|