Cargando…

Enhancing vs. inhibiting semantic performance with transcranial magnetic stimulation over the anterior temporal lobe: Frequency- and task-specific effects

Accumulating, converging evidence indicates that the anterior temporal lobe (ATL) appears to be the transmodal hub for semantic representation. A series of repetitive transcranial magnetic stimulation (rTMS) investigations utilizing the ‘virtual lesion’ approach have established the brain-behavioura...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, JeYoung, Lambon Ralph, Matthew A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204263/
https://www.ncbi.nlm.nih.gov/pubmed/33744456
http://dx.doi.org/10.1016/j.neuroimage.2021.117959
Descripción
Sumario:Accumulating, converging evidence indicates that the anterior temporal lobe (ATL) appears to be the transmodal hub for semantic representation. A series of repetitive transcranial magnetic stimulation (rTMS) investigations utilizing the ‘virtual lesion’ approach have established the brain-behavioural relationship between the ATL and semantic processing by demonstrating that inhibitory rTMS over the ATL induced impairments in semantic performance in healthy individuals. However, a growing body of rTMS studies suggest that rTMS might also be a tool for cognitive enhancement and rehabilitation, though there has been no previous exploration in semantic cognition. Here, we explored a potential role of rTMS in enhancing and inhibiting semantic performance with contrastive rTMS protocols (1 Hz vs. 20 Hz) by controlling practice effects. Twenty-one healthy participants were recruited and performed an object category judgement task and a pattern matching task serving as a control task before and after the stimulation over the ATL (1 Hz, 20 Hz, and sham). A task familiarization procedure was performed prior to the experiment in order to establish a ‘stable baseline’ prior to stimulation and thus minimize practice effect. Our results demonstrated that it is possible to modulate semantic performance positively or negatively depending on the ATL stimulation frequency: 20 Hz rTMS was optimal for facilitating cortical processing (faster RT in a semantic task) contrasting with diminished semantic performance after 1 Hz rTMS. In addition to cementing the importance of the ATL to semantic representation, our findings suggest that 20 Hz rTMS leads to semantic enhancement in healthy individuals and potentially could be used for patients with semantic impairments as a therapeutic tool.