Cargando…
A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain–Computer Interfaces
Brain–computer interfaces (BCIs) utilizing machine learning techniques are an emerging technology that enables a communication pathway between a user and an external system, such as a computer. Owing to its practicality, electroencephalography (EEG) is one of the most widely used measurements for BC...
Autores principales: | Ko, Wonjun, Jeon, Eunjin, Jeong, Seungwoo, Phyo, Jaeun, Suk, Heung-Il |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204721/ https://www.ncbi.nlm.nih.gov/pubmed/34140883 http://dx.doi.org/10.3389/fnhum.2021.643386 |
Ejemplares similares
-
Semi-supervised generative and discriminative adversarial learning for motor imagery-based brain–computer interface
por: Ko, Wonjun, et al.
Publicado: (2022) -
EEG-based Brain-Computer Interfaces for people with Disorders of Consciousness: Features and applications. A systematic review
por: Galiotta, Valentina, et al.
Publicado: (2022) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
Frontal alpha asymmetry interaction with an experimental story EEG brain-computer interface
por: Krogmeier, Claudia, et al.
Publicado: (2022) -
EEG brain signals to detect the sleep health of a driver: An automated framework system based on deep learning
por: Ettahiri, Halima, et al.
Publicado: (2022)