Cargando…

A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data

AIM: We propose a method for screening full blood count metadata for evidence of communicable and noncommunicable diseases using machine learning (ML). MATERIALS & METHODS: High dimensional hematology metadata was extracted over an 11-month period from Sysmex hematology analyzers from 43,761 pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Gladding, Patrick A, Ayar, Zina, Smith, Kevin, Patel, Prashant, Pearce, Julia, Puwakdandawa, Shalini, Tarrant, Dianne, Atkinson, Jon, McChlery, Elizabeth, Hanna, Merit, Gow, Nick, Bhally, Hasan, Read, Kerry, Jayathissa, Prageeth, Wallace, Jonathan, Norton, Sam, Kasabov, Nick, Calude, Cristian S, Steel, Deborah, Mckenzie, Colin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Future Science Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204819/
https://www.ncbi.nlm.nih.gov/pubmed/34254032
http://dx.doi.org/10.2144/fsoa-2020-0207
_version_ 1783708397447675904
author Gladding, Patrick A
Ayar, Zina
Smith, Kevin
Patel, Prashant
Pearce, Julia
Puwakdandawa, Shalini
Tarrant, Dianne
Atkinson, Jon
McChlery, Elizabeth
Hanna, Merit
Gow, Nick
Bhally, Hasan
Read, Kerry
Jayathissa, Prageeth
Wallace, Jonathan
Norton, Sam
Kasabov, Nick
Calude, Cristian S
Steel, Deborah
Mckenzie, Colin
author_facet Gladding, Patrick A
Ayar, Zina
Smith, Kevin
Patel, Prashant
Pearce, Julia
Puwakdandawa, Shalini
Tarrant, Dianne
Atkinson, Jon
McChlery, Elizabeth
Hanna, Merit
Gow, Nick
Bhally, Hasan
Read, Kerry
Jayathissa, Prageeth
Wallace, Jonathan
Norton, Sam
Kasabov, Nick
Calude, Cristian S
Steel, Deborah
Mckenzie, Colin
author_sort Gladding, Patrick A
collection PubMed
description AIM: We propose a method for screening full blood count metadata for evidence of communicable and noncommunicable diseases using machine learning (ML). MATERIALS & METHODS: High dimensional hematology metadata was extracted over an 11-month period from Sysmex hematology analyzers from 43,761 patients. Predictive models for age, sex and individuality were developed to demonstrate the personalized nature of hematology data. Both numeric and raw flow cytometry data were used for both supervised and unsupervised ML to predict the presence of pneumonia, urinary tract infection and COVID-19. Heart failure was used as an objective to prove method generalizability. RESULTS: Chronological age was predicted by a deep neural network with R(2): 0.59; mean absolute error: 12; sex with AUROC: 0.83, phi: 0.47; individuality with 99.7% accuracy, phi: 0.97; pneumonia with AUROC: 0.74, sensitivity 58%, specificity 79%, 95% CI: 0.73–0.75, p < 0.0001; urinary tract infection AUROC: 0.68, sensitivity 52%, specificity 79%, 95% CI: 0.67–0.68, p < 0.0001; COVID-19 AUROC: 0.8, sensitivity 82%, specificity 75%, 95% CI: 0.79–0.8, p = 0.0006; and heart failure area under the receiver operator curve (AUROC): 0.78, sensitivity 72%, specificity 72%, 95% CI: 0.77–0.78; p < 0.0001. CONCLUSION: ML applied to hematology data could predict communicable and noncommunicable diseases, both at local and global levels.
format Online
Article
Text
id pubmed-8204819
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Future Science Ltd
record_format MEDLINE/PubMed
spelling pubmed-82048192021-06-15 A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data Gladding, Patrick A Ayar, Zina Smith, Kevin Patel, Prashant Pearce, Julia Puwakdandawa, Shalini Tarrant, Dianne Atkinson, Jon McChlery, Elizabeth Hanna, Merit Gow, Nick Bhally, Hasan Read, Kerry Jayathissa, Prageeth Wallace, Jonathan Norton, Sam Kasabov, Nick Calude, Cristian S Steel, Deborah Mckenzie, Colin Future Sci OA Research Article AIM: We propose a method for screening full blood count metadata for evidence of communicable and noncommunicable diseases using machine learning (ML). MATERIALS & METHODS: High dimensional hematology metadata was extracted over an 11-month period from Sysmex hematology analyzers from 43,761 patients. Predictive models for age, sex and individuality were developed to demonstrate the personalized nature of hematology data. Both numeric and raw flow cytometry data were used for both supervised and unsupervised ML to predict the presence of pneumonia, urinary tract infection and COVID-19. Heart failure was used as an objective to prove method generalizability. RESULTS: Chronological age was predicted by a deep neural network with R(2): 0.59; mean absolute error: 12; sex with AUROC: 0.83, phi: 0.47; individuality with 99.7% accuracy, phi: 0.97; pneumonia with AUROC: 0.74, sensitivity 58%, specificity 79%, 95% CI: 0.73–0.75, p < 0.0001; urinary tract infection AUROC: 0.68, sensitivity 52%, specificity 79%, 95% CI: 0.67–0.68, p < 0.0001; COVID-19 AUROC: 0.8, sensitivity 82%, specificity 75%, 95% CI: 0.79–0.8, p = 0.0006; and heart failure area under the receiver operator curve (AUROC): 0.78, sensitivity 72%, specificity 72%, 95% CI: 0.77–0.78; p < 0.0001. CONCLUSION: ML applied to hematology data could predict communicable and noncommunicable diseases, both at local and global levels. Future Science Ltd 2021-06-12 /pmc/articles/PMC8204819/ /pubmed/34254032 http://dx.doi.org/10.2144/fsoa-2020-0207 Text en © 2021 The authors https://creativecommons.org/licenses/by/4.0/This work is licensed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
spellingShingle Research Article
Gladding, Patrick A
Ayar, Zina
Smith, Kevin
Patel, Prashant
Pearce, Julia
Puwakdandawa, Shalini
Tarrant, Dianne
Atkinson, Jon
McChlery, Elizabeth
Hanna, Merit
Gow, Nick
Bhally, Hasan
Read, Kerry
Jayathissa, Prageeth
Wallace, Jonathan
Norton, Sam
Kasabov, Nick
Calude, Cristian S
Steel, Deborah
Mckenzie, Colin
A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data
title A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data
title_full A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data
title_fullStr A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data
title_full_unstemmed A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data
title_short A machine learning PROGRAM to identify COVID-19 and other diseases from hematology data
title_sort machine learning program to identify covid-19 and other diseases from hematology data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204819/
https://www.ncbi.nlm.nih.gov/pubmed/34254032
http://dx.doi.org/10.2144/fsoa-2020-0207
work_keys_str_mv AT gladdingpatricka amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT ayarzina amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT smithkevin amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT patelprashant amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT pearcejulia amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT puwakdandawashalini amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT tarrantdianne amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT atkinsonjon amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT mcchleryelizabeth amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT hannamerit amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT gownick amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT bhallyhasan amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT readkerry amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT jayathissaprageeth amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT wallacejonathan amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT nortonsam amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT kasabovnick amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT caludecristians amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT steeldeborah amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT mckenziecolin amachinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT gladdingpatricka machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT ayarzina machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT smithkevin machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT patelprashant machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT pearcejulia machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT puwakdandawashalini machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT tarrantdianne machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT atkinsonjon machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT mcchleryelizabeth machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT hannamerit machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT gownick machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT bhallyhasan machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT readkerry machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT jayathissaprageeth machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT wallacejonathan machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT nortonsam machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT kasabovnick machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT caludecristians machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT steeldeborah machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata
AT mckenziecolin machinelearningprogramtoidentifycovid19andotherdiseasesfromhematologydata