Cargando…
Real-time Prediction of the Daily Incidence of COVID-19 in 215 Countries and Territories Using Machine Learning: Model Development and Validation
BACKGROUND: Advanced prediction of the daily incidence of COVID-19 can aid policy making on the prevention of disease spread, which can profoundly affect people's livelihood. In previous studies, predictions were investigated for single or several countries and territories. OBJECTIVE: We aimed...
Autores principales: | Peng, Yuanyuan, Li, Cuilian, Rong, Yibiao, Pang, Chi Pui, Chen, Xinjian, Chen, Haoyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204940/ https://www.ncbi.nlm.nih.gov/pubmed/34081607 http://dx.doi.org/10.2196/24285 |
Ejemplares similares
-
Retrospective analysis of the accuracy of predicting the alert level of COVID-19 in 202 countries using Google Trends and machine learning
por: Peng, Yuanyuan, et al.
Publicado: (2020) -
Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020
por: Li, Cuilian, et al.
Publicado: (2020) -
Trends in Online Search Activity and the Correlation with Daily New Cases of Monkeypox among 102 Countries or Territories
por: Du, Min, et al.
Publicado: (2023) -
Density 21.5 : for flute alone
por: Varése, Edgard, 1883-1965
Publicado: (1936) -
215b. Real-World Experience of Letermovir Use at an Academic Transplant Center
por: Ryu, HaYoung, et al.
Publicado: (2022)