Cargando…
Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ)
Mass spectrometry imaging (MSI) enables the unbiased characterization of surfaces with respect to their chemical composition. In biological MSI, zones with differential mass profiles hint towards localized physiological processes, such as the tissue-specific accumulation of secondary metabolites, or...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205298/ https://www.ncbi.nlm.nih.gov/pubmed/34179452 http://dx.doi.org/10.7717/peerj-cs.585 |
_version_ | 1783708480720338944 |
---|---|
author | Rosas-Román, Ignacio Winkler, Robert |
author_facet | Rosas-Román, Ignacio Winkler, Robert |
author_sort | Rosas-Román, Ignacio |
collection | PubMed |
description | Mass spectrometry imaging (MSI) enables the unbiased characterization of surfaces with respect to their chemical composition. In biological MSI, zones with differential mass profiles hint towards localized physiological processes, such as the tissue-specific accumulation of secondary metabolites, or diseases, such as cancer. Thus, the efficient discovery of ‘regions of interest’ (ROI) is of utmost importance in MSI. However, often the discovery of ROIs is hampered by high background noise and artifact signals. Especially in ambient ionization MSI, unmasking biologically relevant information from crude data sets is challenging. Therefore, we implemented a Threshold Intensity Quantization (TrIQ) algorithm for augmenting the contrast in MSI data visualizations. The simple algorithm reduces the impact of extreme values (‘outliers’) and rescales the dynamic range of mass signals. We provide an R script for post-processing MSI data in the imzML community format (https://bitbucket.org/lababi/msi.r) and implemented the TrIQ in our open-source imaging software RmsiGUI (https://bitbucket.org/lababi/rmsigui/). Applying these programs to different biological MSI data sets demonstrated the universal applicability of TrIQ for improving the contrast in the MSI data visualization. We show that TrIQ improves a subsequent detection of ROIs by sectioning. In addition, the adjustment of the dynamic signal intensity range makes MSI data sets comparable. |
format | Online Article Text |
id | pubmed-8205298 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82052982021-06-24 Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ) Rosas-Román, Ignacio Winkler, Robert PeerJ Comput Sci Bioinformatics Mass spectrometry imaging (MSI) enables the unbiased characterization of surfaces with respect to their chemical composition. In biological MSI, zones with differential mass profiles hint towards localized physiological processes, such as the tissue-specific accumulation of secondary metabolites, or diseases, such as cancer. Thus, the efficient discovery of ‘regions of interest’ (ROI) is of utmost importance in MSI. However, often the discovery of ROIs is hampered by high background noise and artifact signals. Especially in ambient ionization MSI, unmasking biologically relevant information from crude data sets is challenging. Therefore, we implemented a Threshold Intensity Quantization (TrIQ) algorithm for augmenting the contrast in MSI data visualizations. The simple algorithm reduces the impact of extreme values (‘outliers’) and rescales the dynamic range of mass signals. We provide an R script for post-processing MSI data in the imzML community format (https://bitbucket.org/lababi/msi.r) and implemented the TrIQ in our open-source imaging software RmsiGUI (https://bitbucket.org/lababi/rmsigui/). Applying these programs to different biological MSI data sets demonstrated the universal applicability of TrIQ for improving the contrast in the MSI data visualization. We show that TrIQ improves a subsequent detection of ROIs by sectioning. In addition, the adjustment of the dynamic signal intensity range makes MSI data sets comparable. PeerJ Inc. 2021-06-09 /pmc/articles/PMC8205298/ /pubmed/34179452 http://dx.doi.org/10.7717/peerj-cs.585 Text en © 2021 Rosas-Román and Winkler https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Bioinformatics Rosas-Román, Ignacio Winkler, Robert Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ) |
title | Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ) |
title_full | Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ) |
title_fullStr | Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ) |
title_full_unstemmed | Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ) |
title_short | Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ) |
title_sort | contrast optimization of mass spectrometry imaging (msi) data visualization by threshold intensity quantization (triq) |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205298/ https://www.ncbi.nlm.nih.gov/pubmed/34179452 http://dx.doi.org/10.7717/peerj-cs.585 |
work_keys_str_mv | AT rosasromanignacio contrastoptimizationofmassspectrometryimagingmsidatavisualizationbythresholdintensityquantizationtriq AT winklerrobert contrastoptimizationofmassspectrometryimagingmsidatavisualizationbythresholdintensityquantizationtriq |